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ABSTRACT

An alternative transformation which can be used
in nonmetric scaling has been proposed by Alan Yates. 1In
the first part of the paper we outline a general conceptual
framework for the transformational approach to scaling. In
the second part we analyze the Yates transformation, prove
its monotonicity, give explicit (noniterative) formulas,
discuss the computation of the transformed values, and dis-
cuss some anomalies the transformation has. The conclusion
is that this transformation should not be used in Z-space,
as Yates does. The use of the transformation in T-space
has some conceptual advantages over the use of positive

orthant or absolute value methods.

#°r lzave of absence from the University of Leiden, Leiden,
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Summary

A nonmetric scaling method proposed by Alan Yates
is analyzed in this paper. We give some alternative repre-
sentations of the loss functions involved, analyze the
iterative process proposed by Yates, give some explicit
min-max representations, and prove monotonicity of the
transformation.
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For our purposes we can define a measurement

model as a vector valued function Z(8) of a parameter 6

varying in a general parameter space 0. We shall assume a

fixed indexing of the n coordinate values of Z(8), and we
shall call the vector {zi(e)} the vector of model values.

In this interpretation Z is a mapping of © into the meas-

urement space QA, which is n dimensional real space. The

data space A, 1s the set of all nxn matrices S = {gij}

satlisfying

Sl: Oij is either 0, 1, or -1
82: Oij = —Oji
83: Gij = 1 if Osp = ij = 1 for any k.

An eqguilvalent definition of AA is the set of all partial

orderings over I = {1,2,...,n}. For a given S in the data
2 . s

space, the measurement inequalities are the n~ inequalities

#¥0n leave of absence from the University of Leiden, Leiden
The Netherlands.



Gij(zi(e)—zj(G)) > 0

Observe that to require equality of zi(e) and zj(e) in this

framework, we have to use a different indexing such that
both z,(6) and z.(8) are mapped into the same model value
1 J

Zk(e)' Another possibility is to use a second data space

A, which contains matrices A = {uij} satisfying

| Al; uij is either 0 or 1.
A2 aij = qu
= i = . = 1 for any k.
A3 13 1 if Oy akJ

(or, equivalently, the set of all equivalence relations

over I) and a second set of measurement equalities

aij(zi(e)—zj(e)) = 0

We shall adopt the first possiblity in this paper. We also
define a second measurement space QB’ which is an n2 dimen-
sional real space, and a mapping T of AAxG into QB by the
rule

tij (S,e) = Oij (Zi(e)—zj (e)>

Moreover, we let nybe the cone of all n-dimensional vec-

tors {zi} satisfying



and we letT Hg
ST
o
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be the nonnegative orthant of QB’ i.e., the

. 2 .. . . .
cone of all n -dimensional vectors {tij} satisfying tij >0
for all i,5 = 1,...,n. The measurement inequalities can

now be written in the two equivalent ways

Observe that in the first formulation, the cone depends on

SEAA and the mapping Z is independent of S. In the second

formulation, the mapping T depends on S, but the cone 1is
independent of S.
The two different ways of choosing the measure-

ment space define two different approaches to nonmetric
44

{ -
scaling. Let ¢S be a mapping of QA into %ﬁ, and let ¢ be a

mapping of QB into Qg with the property that

{a ] )
PA: Zegj{++ @S(z) = z

B 7 p(t) = t.

PB: tgg

The mappings ¢, and Y are called the nonmetric transforma-

tions. The measurement inequalities are now equivalent with



05(7(8)) = 7(8)

]

V(T(S,8)) = T(S,0)

The c¢lass of transformational algorithms in Z~sgspace mini-

mize a sultably normed version of

A (5,0) = GA[Z(S), ¢S{z(e)}]

and the transformational algorithms in T-space minimize a

suitably normed version of

Ag(8,8) = 65[T(5,0),9{T(5,6)}]

Here GA and 6B are metrics defined on the respective linear
spaces. Both the Kruskal (1964a,b) block almagamation
method and the Gubttman (1968b) rank image method are trans- -
formational methods in Z-space, the positive orthant method
(De Leeuw, 1968, 1970), the absolute value method (Guttman,
1968) and the pairwise method (Johnson, 1973) are all
transformational methods in T-space. In fact, the positive
orthant method has the other two T-space methods as special
cases.

A particular class of transformational methods are

the projection methods. A projection method in Z-space




defines ¢, by the rule

2= 9,(2{(8)) iff §,L2(8),21 = inf SA[Z(G),Z]
ZeLni )

A projection method in T-space defines Y by

= y[r(s,0)1 ifr §,[T(5,8),8] = inf §5[T(8,6),t]
tegé

Kruskal's method is a projection method in T-space, but the
rank image method is not. The positive orthant method is a
projection method, and so are 1ts speclal cases. In Tact,

if 8y is any of the power (or Qp> metrics, we find
o liimra oy \
t = g{ngg,e,i + T(S,0)} = max[T(S,06),0]

and A(S,0) 1is the SB—noym of the vector max[-T(3S,8),01].

The distinction made by Guttman (1968b), Johnson
(1973) and Roskam (1969b) which classifies algorithms as
nontransformational or transformational is confusing. They
maintain that the positive orthant method is nontransforma-
tional, while our discussion shows that it has a transfor-
mational (even projectional) interpretation in a different
space. The fact that the transformation is very easy to
compute, and that it can be substituted into the formula

for A(S,0) right away, is not essential. The distinction



between projection algorithms and other nonprojectional
transformational algorithms is much more important, because
for a suiltable cholce of the metrics ¢ the projection
algorithms have a number of advantages like differentiabil-
ity (De Leeuw, 1973).

The Z=-space and T-space methods do not exhaust
the possible nonmetric scaling methods. In fact, a more
general description is possible, in which the two methods
turn out to be the opposite extremes of a large class of

methods. First we define a nonmetric data structure as a

finite set of matrices Sl,...,SmEAA. The measurement ine-

O"(Z-<e) Z'(e>) > O'
lz] 1 J

For each k = 1,...,m the appropriate subset of these ine-

qualities defines a cone Qk in Z-space. The loss function

is a suitably scaled version of

m
ALS .,38 ;6] = Z 5k[z(e), ¢k{z(e>}]

5 3
1 m k=1

with ¢, @ 7 - Qk defined in such a way that ¢k(z)

= z <> zeﬁk. Prom a computational point of view, it 1is

important if we norm each of the & separately before we

k

add them, or if we norm the sum of the "raw" 8, (cf.

Kruskal & Carroll, 1969).
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Lme Ln ok g,, = 1 for at most one
1d

IR G Z-apace methods correspond with the case

in which we have only a single matrix S, . This general
k

i

o been discussed by Roskam (1969b), but in his

-~ e ~ 1 ¢
casge has al

0

vaper the metrics &, , and the Transformations are much
b ks w k

23]

more specific, and the emphasis 1s more on the norming of
fhe loss functions.

In this paper we investigate an interesting
approach suggested by Yates which combines aspects of T-
pece and Z-space approaches, and which combines projection

nd nenprojection aspect
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1: The Balanced Least-Squares Transformation

Becau

2}

e all formulas in this paper are developed
Tor a fixed 8e0 and a fixed SeA;, we do not use these

£
indices any more. We generalize Yates' definition of the

balanced least-squares (BLS) transformation in two respects.

b

n the first place we use a matrix of known welghts 1n the

(@3

efinition of the loss function; in the second place we

0

eneralize the analysis to partial orders. We start by
deccnpesing a welghted version of the T-space squared error

sz function AB into n components



with
tij = oij(zi—zj)
and {wij} a matrix of positive weights (with some minor

modifications all of the results of this paper also hold

for nonnegative weights).

Define the function Ai(y) of the single real var-

lable y by
n
_ 1 _ )
with
t.. = 0., -Z.).
lJ(y) lJ(y J)

Clearly Ai(zi) = A, and Ai(y) indicates, in some sense, how

i
large loss function component 1 would have been if Zs had
been equal to y. We now define the BLS-ftransform Zi of Zy by

Questions of existence and uniqueness are considered at a
later stage. An alternative definition of Xi(y) 1s also

useful for some purposes. IT

1 if tij(y) < 0

= 04 £5,(y) 2 0



2

H~13

A (y) o= w4jéij(y)(y~zj)

j=1 "

Nbserve then this representation remains valid 1f we define

1 if ijky) <0
0 if , > 0
5 (g = 13(y)
1J 0 if g.. = 0 and y 7 2z,
1 . ‘J
: and =z,
u if Oij # 0 y j

with p completely arpitrary.

Some of the definitions are illustrated 1n the

following simple example with Gij = sign (i-j) and Wy = 1
for all 1,7. The zi—values are given in the second column

~Tabie 1. The third column has the monotone regression
Les 213 the fourfth column the rank images zi. In Fig.
w- have plotted the functions t3j(y)’ and in 1:2 we

plotted tu4(y)° In Fig. 2:1 the function k3(y) is
J

given, and 2:2 shows A, (y),

2: Existence and Unlgueness

It is clear that a third way of writing Ki(y) is

1T ~o2
A (y) = inf ) wijﬂtij(y)-tij]

It follows directly from this representation that Xi(y) is
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nvex and continuously differentiable function of y (ef

b
j$%)

Rockafellar, 1970, corollary 26-3-2). 1In fact, Ai(y) is
strictly convex cutside the interval in which it 1s zero.

If this interval consists of at most a single point, then

fhe minimizing value Zi is unigue. A necessary and suffi-
cient condition for A.(y) = 0 is that 6ij(y) = 0 for all
i,J. 1f we define
= ] . = +
Ly {JIGiJ 1}
U, = 1{J = -1},
Uy ‘Jloij 1}

Then this condition is equivalent to

max z, <y < min Z
o J - - . T N
JSLi JEJi
Throughout this paper we adopt the convention
that the max (or sup) over an empty set is -», and the min
(or inf) over an empty set is +w,

3: Iterative Algorithms

The derivative of Ai(y) is simply

g, (y) = 2] wijﬁijw)(y-z;i) .

i=1 7

A7

This made Yates suggest the iterative process



A J=1
J n
N ()
9;—'\/\1—/}(§ij\‘])
J=1
1T
(y) = r
gi\y/ .ijij ij(y) 7{ O
J_.
and
yﬁ_= y
otherwise., Here y* stands for the successor of y in the iterations.

The algorithm has some peculiarities, which
deserve attention. Consider our previous example. The
iterations for i = 3 are represented graphically in Fig.
3:1, and the iterations for i = 4 in Fig. 3:2. It is clear
from this figure that if we want to compute éu, fthen the

algorithm converges to the correct value 5.5 iff we start

in the open interval (5,6). Otherwise The iterations will
T T+

cycle, 1.e., there 1s an s such that y~ = y° ° = 5 and

t+1 T+ . .

v s yE 3 = 6 for all ¢t > s. One possible way out is to

use the more general definition of éij(y)° If u > 0, then
this cycling does not occur, and the algorithm converges
in a finite number of steps. The dots in 3:1 and 3:2 indi-

cate where i1terations with gy = 1 differ from those with

- I}

. = U,



Observe that a gradient algorithm for this

problem has the form

W
1

A4 = y Fo— K‘

J

<
4
Il ~~353

s 0. -7,

13 13 (V) (y-24)

for some k > 0. If we denote the Yates iterate by f%ﬂéﬁﬁiﬁ,
this can be rewritten as

4.

7t = (e, (1)y + key (1)FF

Thus the Yates process 1s a gradient process with stepsize
- -] .
K o= Lei(y)] ~. This seems to suggest that we take large
«: va‘
steps if we are close to fthe minimum, fhe cycling is an

example that this may go wrong. Moreover, it 1s clear that

for all 0 < k < gi(y), we have

Ai(y+) < xe (yIag (y )+ (1-xe, (y))2; (¥)

Moreover 1if gi(y) # 0, there 1s a real number wi(y) such
that Ai(y+) < ki(y) for all 0 < Kk < wi(y). It is conse-
quently not difficult to construct a finite gradient algor-
ithm. We start with stepsize [ei(y)]-l. If this does not

decrease xi(y), we half it, and so on.



4: Some Examples

In Table 1 we have collected the %i values for
cur previous example in the fifth and sixth columns. Only
Z) is unique, all others are only restricted to lie in the
interval I[ii] given in column five. We make the choilce of

ii unique by

This makes ii equal to the endpoint of I[%i] that is
closer to the data point z.. If I[Ei] only contains one
point, this does not lead to inconsistencies. Another con-
sequence 1s that 21 is eqgual to the smallest of the Zs and
én to the largest of the z, (or: the z, and the Ni have
equal range).

A second example is taken from Roskam (1969a, p.
11). He uses it to illustrate the importance of the dif-
ferent possibilities of handling ties (in fact, his exam-
ple tends to overemphasize this). Each of the transforma-
+ional principles has a strong and a weak version. In the
example there are three tie-pblocks of three different index

valuss. Thne implied partial order 1is (1,2,3) < (4,5,6)

A
o
»
O
q

:rtarrret this to mean that 05 within tie-
“ezriy this zlready implies that I[Ei]

ame tie-block. We can now

bl
4]
n
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by

BLS vy  taking Z. from the

- B -~
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interval in the usual way, we can also define a strong ver-
sion by setting all 2z, corresponding with tie-block J equal

to the constant zZ(J) define by

i.e., Z2(J) equals the endpoint of I[Ei] that is closer to
the block average. Observe that AA for BLS is larger than

AA for the other approaches, observe also that the %i do
not add up to the same value as the Zs - The last property
is of some importance. The 21 are averages of disjoint
blocks of Zy values, the z§ are permutations of the Zy
values, which also can be considered as averages of dis-
joint blocks of size one. This observation can be used to
construct compromise transformations between the two
extremes z§ and Ei {(Young, 1973). 1In the case of linear
orders, it can also be used to apply & femiliar theorem of
Hardy, Littlewood, and Polya (1929).

The most important conseguence of this ftheorem

£

for our purposes 1s that

”~ ~ ~
% 4 o % — % 17
7 + 7 + + < oz + Z + . + z
1 2 “k = 71 2 Kk
for ali k = 1,..., n. There is no way to derive relation-
ships 1like this Tztwzen z, and Z,



The final example in Table 3a illustrates the BLS

reansformation for the more complicated partial order.

e

2

We need the generalized definition of isotone regression,

and the generallzed definition of rank images (the permuta-
tion of the data values that satisfies the inequalities and
minimizes XA). In 3b the same data values are used for the

linear order

Observe that the kA value for %i is lower for the linear

order than for the partial order. This indicates that XA
is not really a good measure to compare the different
transformations in Z-space with the BLS transformation.
0Of course, it is easy to verify that in the BLS case we
also have AA = 0 1iff Zs satisfies the order restrictions.

Chserve that the natural loss~function suggested by the

construction of the Zi is

lwijéij(zi)(zi—zj)

I e~113

ME) = Dh (B = ]
it i=1 j

|,_
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the %, satisfy the order restrictions, then A(Z) = 0,
Lut if A{Z) = 0 then it does not necessarily follow that
v, satisfiles the restrictions. In the case of a linear

-1 £

order, for example, with Wij = 1 for all 1,j, it Jjust fol-

then the 4. satisfy the partial order

ZQ“‘"';ZL!-"‘*’Z6:‘—"Z8'——c . »

VA S S
1 3 5 { 9
The main reason for this 1s the curious fact that %i is
independent of the value of Zs s although it depends on the
value of the z, with j # 1 (in fact, it 1s a piecewise

oJ
linear function of those values).

5: An Explicit Formula

Define the index sets

]
~
[
g
I
N
>
Q
|
+
}..._I
[

Li(y>

Ui(y) = {jly > z. A~ o,. = =1}

Obviously

for all real x,y. Moreover, we can decompose the unions

L., (x) L)Ui<y) in a very useful way. For all real x,y we



can write
LoAxd U, () = L (o u b ) Jy EUi<y'>~Ui(X)]}-[Ui(x)-—Ui(y)]
We now define for each subset I of N = {1,2,...,n}

5, (1) = Z{wijzj{jeI}
M, (I) = E{wijljel}

By the usual conventions Sj(¢) = Mi(¢) = 0., 1If Mi(I) # 0,

then we also define

Ai(I) = Si(I)/Mi(I).

Tt is clear from the definitions given so far that

jeUi(y) - Ui<X> iff 044 = -1 x < Z5 <y,
jeUi(x) - Ui(y) iff Oij = -1 A ¥ 5_zj < X,
jeLi(X) - Li(y) iff Gij = 41 A x < Zj < ¥,
jeLi(y) - Li(x) iffe Oij = +1 A y < Zj < X

By performing weighted summations over the indices in the

subset, we conclude



- 18 .

f A

M LU, (0 =U, () Ix <08, [0 () -0, (30 ] M L0, (9)-0, (x) 1y,

b A
I A

My [0 (x)-U, (y) Iy S, L0 (x)-U (y)] < M, U, (x)-U, (y)Ix,
My Lo, (x)-L, (y) 1y,

Mi[Li(y)—Li(x}]x.

[~
I~

1L GO =Ly () Ix < 8, [L, (%)=L, ()]

5[0, (y)-1; (x)]

| A
| A

Mi[Li<y)~Li<X)]y

From the set theoretical decomposition of Li(X)kJUi(y) we

find

Si[Li(x)LJUi<y>] = Si[Li(X>LJUi(X)] + Si[Ui(y)~Ui(X)]

- Y = .
$1EU CO=U, (0T = 8, TL, (0 U (N + 8310 (1) -L (1] = 8,11, (¥)-L, ()]
Together with the inequalities derived above, this gives

Si[Li(X)LJUi(X)] + D, (x,y)x

<55 L G uU ()] < Sy () uUy (x)] + DL (x,y)y,
and

S; (L (¥) LU, (N + B, (x,3)x

L8 L () UU ()] < ST (U (9] + By (x,5)y,
with

D, (x,y) = Mi[Ui(y)~Ui<X>] - Mi[Ui(X)—Ui(y)],

MLy (O-Ly (1)1 = My [T (y)~L, (0],

E.(x,y)



For any 2z which minimizes ki(y) we have the

relationship

Mi[Li<z)LJUi(z>]z = si[L.(z)LJU.(é)j.

If we substitute x = Z in the first double inequality, we

find
z ] 7 < 7 1
ML (2) wU (v 12 < 8. [L, (2)ul, (y)]
< ML, (2)wU,(2)12 + D, (Z,y)y,
and 1f we substitute y = Z in the second one, we find

~

; > > > w p
Mi[Li(Z)L)U.(z)]z + ui(x,z)x

1
< Si[Li(x)k)Ui(z)] <MLL (x) WU, (2) 12

The most interesting consequence of these inequalifties 1s

that, if we assume that L.(2) and U,(2z) are both nonempty,
AT (WU (E] < 2 < AL (B) VU, (¥)]
Tor all real x and y. This i1s equivalent with
Z = max min Ai[Li(X)LJUi(y)] = m%n max Ai[Li(x)LJUi(y)],

X y v X

where we do not consider pairs x,y such that Li(x)LJUi(y)

¢
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If only one of Li(i) and Ui(E) is nonempty, then this
result remains valid. If both Li(é) and Ui(i) are empty

then

1 (L. (x (v)] A i I ]
m;n mix AL i(k)LJUl\y)J < Z < mix m;n Ai[Li(x)LJLi(y)]

o

because these values give exactly the endpoints of the
interval we have used In the previous section (again: if
there are no lower sets Li(X) except ¢ then the lower bound
is -« by our previous conventions, if there are no upper
sets Ui(y) except ¢ then the upper bound is +«). The for-
mulas are 1llustrated in Table 4a and 40 where we recom-
puted 23 and EM from our first example, and in Table lec
where we computed 23 for the partial order. The lower sets
correspond with the rows of the tables, the upper sets cor-

respond with columns.

6: An Alternative Representation

In this section we prove an explicit formula
which is considerably less economical than the previous
one, but somewhat easlier to handle for theoretical purposes.
Let Li be the set of all subsets of Li and Ui be the set of

all subsets of Ui‘ Suppose that for some LeLi, we find

Qeui such that

AL U U]l = minA,[L o U]
i - ; i
’ Ueui



i
h
-

i

We prove that U is of the form Ui(y) for some real y by
distinguishing some special cases. The case L = U = ¢ 1is
excluded again. Moreover we asgsume (without loss of gen-
erality) that U does not contain any indices k such that
Zk = Ai[LLJg]. This can be done because addlng these
values to U would not change the average anyway.

Case 1: L =1¢, 8 # ¢. Now Ai[LLJU] = Ai[U], and

consequently U 1s the single element set consisting of Zy s

the smallest of the Zj for which Oij = -1. If Zg is the
next smallest of the 2 with Oij = -1, then U = Ui(y) for
all Zk <y < Zg Nonuniqueness of Z and nonexistence of
Z, do not cause problems.

Case 2: L # ¢, U = ¢. Now we can set U = Ui(y)

i = mi = -1}.
with y <z, = min {Zjlgij }

Case 3: L # ¢; U

I

U,. = i
u. Then U Ui(y) with

y > z_ = max {z.| = -1}.

K 943

;
Case U: L # ¢ U# ¢; UF Qi, In this case we

can delete an index from U. Suppose we delete k. Then by

definition
AJLOU-{kE] > A;[LuU]
or



In the same way we can add an index £ with Gij = -1 to U

and this gives

o3
\

> Ai[Lug_]

We remember that we excluded all elements with 2
= Ai[L&JQj from U, and set U = Ui(y) with y = Ai[LLJQ].
This is the last case and in the same way we can prove that

1f L maximizes A.[LUTUT] over LgLi for fixed Ueui, then L is
= 3 =

of the form Li(x). Consequently,

min max Ai[LLJU] max min Ai[Li(x)LJUi(y)]
LEL1 Usui B X y

min max Ai[LLJU] min max Ai[Li(x)LJUi(y)]
Ueui Lel. v X
This new representation helps in proving one of the main
results of the paper. Suppose Ogy 7 +1. Then jeLeLk

implies Ukj = +1 implies Oij = +1, Thus Lk c Li' In the

same way Ui gAUy. Consequently both

max min A [LUU] > max min A, [LUU]
Lely Uelly = Lel, Uell,

and

A\

min max A.[LWU] min @ max A, [LuUU]
i — k
Ueui Lew, Ueuk LELK
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Ir Zs and %k are unigue, this dmplies directly that

0.y (2,-2,) > 0.

if N is uniquely determined and Zy is not, then

Oy (27y) 2 0

for all yeI(ik). If ik is uniquely determined and éi is

not, then

Oy (y=2) 2 0
for all y in the interval I[%i]. If both ii and Ek are not
uniquely determined, then
N ~ . _ ot
Z, = max z, <z, < mn z, = 2,
jelL, v JeU, J
i i
Z_ 2 min z., < 2z, < min =z, = ¥
JeLk U jeUk J K

If in addition Li N Uk # ¢, 1.e., if there 1s an & such

that Gig = Ozk = +]1 then even 2z

contains at most one point. If

<z and I[zi] M I[zk]

N+

5 N Uk = ¢ and z, < 2z,
] + . 3 =
fhen again 2 < 2y Only if Li N Uk ¢ and Z1e < Zy the

intervals may overlap. By checking the possible cases, it



I3 casy Lo sce that our cholce of %i and ik from the

additional Comments

The meost Important theoretical contributions of
“hiis paner are the explicit min-max formulas. They provide
us with alternative algorithms and they make it easy fto
rrove the ccenjecture of Yates and Young that BLS always

fyer o nonctonic transformation. Another valuable contri-

L
(

butlorn 1s the proof that Yates' algorithm does not neces-
sarily converge, and the modification which makes 1t con-
vergent. These contributions, however, do not imply in any
sense that the BLS transformation 1s elther better or worse
than the existing ones. The only obvious advantage of BLS
15 that 1t is relatively easy to compute, even for compli-
cated partial orders. A disadvantage 1s the fact that

A(Z) = 0 does not necessarily imply Oij(zi_zj> > 0 for all

i,J. Going back to the original definition, we find that

A(zZ) = i0f z . for all i,] iff o,.(Z.-z.) > O
M(Z) 0 iff tij( 1) > 0 for all i,] iff Olj(71 77) > 0,

g )

for all 1,j 1ff thc intervals I[Z.] are nonempty for all i,

10 max %i min z.. An obvious counter example to the ideua
Jeli
that X(z) can be made equal tc zero iff z is monotonic is

given in Table 5a. Several vroposals are possible which



redefine BLS in such a way that this disadvantage

disappears. They ahold be based, in a natural way, on the

gy

fact that Z, is not influenced by the value of Z, or, to

put it differently, that we do not need Zs to compute Ei.

The obvious proposal is to compute the BLS for all mid-

points M(i,j). In the example of Table 5a, this gives the

results in Table 5b. We compute the it over midpoints.

I

This gives X(Z ) = 10.5 {(for the six values which are shown
in the table). Clearly we now have A(ﬁm) = (0 iff zZ; is

monotonic. After our computations, we construct the 21 as
the set of numbers which lie in the interval defined by the
midpoints %? and which minimize KA under these conditions.
For the partial order on page 15, this last step is a bit
more complicated. In Table 6a we investigated the mid-
points, in Table 6b we constructed the intervals and com-
puted the Zi' The nice thing about this modification 1is
that our results on monotonicity and our explicit formulas
still apply.

8+ A Scaled Loss Function

Define

n n 5 2
- igl lewiJ[[tij(z ,0) (=t (25,800
n n > N
uizl jzlwijtij<zi’e)

wit



: 1 \ jod 7

t,.(2, = g,.,(z,~2.(6

(Z;,0) = 0;(2,-2,(8))

and {Ei} the BLS-transformation. A new scaling technique,
hich can be used for any measurement model, is to minimize
this function over 6e0.
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o3>

DN

i i i i
1 2 1.5 1 [-o,1] 1.00
2 1 1.5 2 [2,3] 2.00
3 6 L.5 3 [2,3] 3.00°
b 3 4.5 5 5.5 5.50
5 5 5.0 6 [6,10] 6.00
o 10 10.0 10 [10,] 10.00
5.0 16 18-25



Table 2

] 1;1 Sgl WZ%i SZ* I[le w~1 SNl
1 3 3.00 2.000 2 1.66 (~=,2] 2.00 2.00
2 1 1.00  2.000 1 1.66. (~»,2] 1.00 2.00
32  2.00 2.000 2 1.66 (-»,2] 2.00 2.00
47 4.5 4.833.. & 3.33.. 2.5 2.50 2.50
5 5 k.25 4.833 3 3.33 2.5 2.50  2.50
6 4 4 4.833 3 3.33 2.5 2.50 2.50
7 3 k.25 4.833.. 7  6.66.. [7,+=) 7.00 7.00
8 8 8.00  4.833 8 6.66 [7,+2) 8.00 7.00
9 2 h.25 4,833 5 6.66 [7,+2) 7.00 7.00
Ay 14,75 28.833 Lo 56.00 70.75 72.75



Table 3

-

1 . . z¥ Irz. 1 7z .
1 1 1 1
1 2 1.5 1 (=o,1] 1
2 1 1.5 2 2 2
3 5 3.5 4 2 2
4 4 Ie! 5 [5,°) 5
5 2 3.5 4 [5,°) 5
6 I b, 0 2 [2,=) 4
Aﬁ 5.0 12 21
i . %i |zt (%) 5.
1 > 3/2 1 (=,1] 1.
2 1 3/2 2 2.0 2.
3 5 11/3 2 2.0 2.
I I 11/3 4 3.5 3.
5 2 11/3 4 4.5 4,
6 I b 5 [5,°) 5.
31/6 16 18

(a)

o)



¢ {47 {4,51 {4,5,6} min
¢ 3 4 6 3
{1} Z 5/ 10/3 5 2
{1,2} 3/2 z 11/3 21/5 2
i
max ; 3 4 6 [2,3]
(a)
b {55 {5,6}) min ¢ {5} {4,5}) min
¢ X 5 15/2 5 ® X 2 3 o
{3} 6 11/2 7 11/2 {1}] 2 2 8/3 P
{1,314 4 13/3 23/4 L
{1,2,3}} 3 14/4 24/5 3 max| 2 2 3 2
max 6 11/2 15/2 11/2
(b) (c)



% Lz 7 . z? i[zi] 7 .
i g 1.5 1 (=0,17] 1
> 1 1.5 2 [2,3] 2
3 b 8.5 3 [2,31 3

4 3 3.5 4 [4,5] 4

5 6 5.5 5 L4,5] 5
6 5 5.5 6 [6,7] 6

i 7 z I[Zi %i

1 g o [—e,1.5] 1
w(1,2) ? 1.5 ? ?
2 1 ? [1.5,2.51 2
M(2,3) ? 2.5 ? ?
3 i B [2.5,3.5] 3
M(3,4) ? 3.5 ? ?
Iy 3 ? r3.5,4.57 4
M(4,5) 9 4.5 ? ?
5 6 ? [4.5,5.5] 5
M(5,6) ? 5.5 ?
6 5 ? [5.5,6.5] 6




},._J

)

Z

M(1,3) 2

M(1,2) 1.5

M(3,0) b.5

M(3,5) 2

M(2,5) 2

M(2,6) r2,h]

Zy 1z, ] 2
__T_”m_u___,,___,._m____

g (~,1.5] 1.5

1 [1.5,2] 1.5

5 2 2

al [L.5,+%) h.5

2 [2,+=) 2

i [2,+%°) by

(@)

(a)

(b)



