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FINDING A POSITIVE SEMIDEFINITE MATRTIX OF
PRESCRIBED RANK r IN A NONLINEAR
DIFFERENTIABLE MANIFOLD

by
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-ABSTRACT

In this paper we study»éome technical aspects of
the problem of choosing the parameters of a matrix function
in such a way that the matrix is approximately positive
semidefinite (psd) of rank r. Applications to multidimensionai‘
scaling are discussed, but not analyzed in detail. They will
be analyzed in detail in Sqme companibn papers, which use

the technical results listed in this paper.
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i Problem
Consider a square symmetric matrix A(ec) whose
clements are functions of real parameters ¢ o assuming

120ty

values in an open set 6. We assume that in © the matrix

functions G (¢) and H_, (7)) (s,t = 1,...,u) defined by
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exist and are contbinuous functions of their arguments. The

eigenvalues of A(e) are written as A8} > A (€
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and the corresponding orthonormal eigenvectors are

XI(G),...,XN(F). They are usually collected in the diagonal

matrix function A(6) or the orthonormal metrix function X ().

Several important data analytic problems in the multidimensional
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eling and Iactor nnalyvsis area can be Tormulated in ferms

b1 finding the value of A which makes A(e) as close as
possible fo the set of matrices of rank r, or to the set of
positive semidefinite (psd) matrices of rank r. In this
paper we try fo solve this problem by maximizing a particular
functlon of the cigenvalues of A(0)., The precise reasons

for choosing this particular parameterization of scaling
problems, and the precise reason for choosing this particular
function of the eigenvalues are outlined in two companion
papers.  The function we use to measure the degree of

‘positive semi-definiteness” and "rank r-negg' simultaneously
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Clearly O < u_(r) < 1 with u (¢) =1 iff %p(P\ = 0 for all
po=r+l,...,n and %p(ﬁ) > O for at least one 1 < p < r iff
A(¢) is pad of rank 1 < p < r. Moreover uT(G) = 0 iff

2 () =0 for all p = 1,...,r and Xp(@) < O for at least one
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pimn iff A(f) 1s nsd of rank 1 < p < n - r. An

alternative, and perhaps slightly more satisfactory, way

defining
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Lhe usual identities and inequalitics associated with this

decomposition are

1&§<( ) E () =1 (e)

sy T S .
D \( > D \ » \p <[ )
%+(@/%;(5) ~ 0

b N ~ ) .
(8) >0 and A (0) =0 iff 2 (c)
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P (0) 20 and A (0) = 0 Aff A (0) > 0.

Ihe modified gain function is simply obtained by defining

How () = 1 iff L () =1, but I (0) = 0 iff xp(r) < 0

for 211 p = 1,...,r and Xp(@) < 0 for at least one

r+ 1 <p < n iff A(f) is nsd of rank 1 < ¢ < n,
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We intend to oo

caient and modified gradient

methods to maximize our gain “ur-tions in Lhe particular

cases we o are interested inm,  Tor “his purpose it is useful

nave genersl exprescions Ior “ho derivatives of these

functions. 1In the appendix we 22 collected some more or

less well known results from the perturbation theory of

cigenvectors and eigenvalues of syrunetric matrices. Since

confusion is possible we surpress the dependence of all

expressions on the value of 6 ¢ 2 Tor the denominator we

Tind, trivially,

with the matrix AL = {a

m the results in the appendix

‘5?‘\—;' = TZI‘[[\Thsjj
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For the second partials of Sr the results are more complicated.
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Although it is clear that the expressions in this sectlon
are powerful enough to use any second order method for
solving our optimization problem, we will discuss the
actual computational procedures only in connection with
the various examples in later papers.

3. Applications

In this section we indicate some possible applications
of the basic formula's of this paper to problems in scaling.
I'he advantages over alternative formulations are only
briefly hinted at, they will be described more extensively
in subsequent papers dealing with each of these special cases.
The purpose of this section is merely to indicate how standard

problems can be reformulated in this new parametrization, and

to give the reader an ildea what this reformulation looks 1like.



In metyic Fuclidean scaling a common problem is to
Jind & constant ¥ (sometimes required to be not smaller than

5 given 7”) such that 6ij + > 1s approximately a set of

/
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disgtances betweern n-points in r-space. We can write this

(using fuzzy equality symbols) as

d. . = 0, . 4+ v

1] 1]
or
2 2 - 2
dll\ =z 63j + C')/@LJ. T oy

Ry using doubly centering we find that this is eguilvalent to
5 & Yy g ]

with A the psd matrices of ravk v, and 61,02,C3 the doubly
| {Sii}’ and the identity.
Existing methods for finding additive constants are given
by Messick and fbelson (19%0), and Cooper (1972). The
method proposed by Messick and Abelson starts with some 7<O),

and then proceeds as follows

step 1:  compute A(y(k>) =

: k k
step 2: compute %1{7( >),Dmo,%r(7< >)

(k+1)

step 3: find v ag the appropriate solution of

ET(Cy) + 2ybr(Cy) + 5T er(C3) = ) A (y



fhis method iz not 2reotly rizovous, hut 1t seems to work quite
well In practiczce, 9 ocan, soreover, be used to derive a
starting point for wmeors sopihigtizated procedures.  The method
proposed by Cooper (1972 =z more gabisfactory. Tt minimizes
. 5
S o= ’ ) = + v - dir.>c
[ [ b J
=1 d:l
over coordinate values and =377 ve constant. Although
this 1s probably the most stveizntTorvsrd approach there
reslly is no need to use this rerticiliwr narasmetrization
of the problem. The one in terms o the elg=uvalues of
thie matrix
A(7> = Cl + 27’67 -+ ’)'ZCJ
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ms are 27 1leble, lhe papers of Lancaster (1963,

results.

appendix for

) give =2 nice summary of avallable They
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erall of the results in our

some

ticulsyr case, It seems reasonable to conjecture

alegorithm that starts with a couple of Messick-

l1terations and then ends with number of Newton-

i

iterations wlill be quite efficlent, This makes

quite trivial to deal with the possible constraint
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ol Tmta dn Multidimensional Scaling

The misosing data problem in multidimensional

Soaling can be formulated as

O + 6T, 4+ .0 =0T e A
p 2" i

Ny

Heve CO is the doubly centered version of the matrix of

squared distances (with missing data first replaced by

zeroes) and T """Tp correspond with the missing data

1
(exch empty cell i,j has a matrix, which is the doubly
centered version of the matrix Eij with only element i,
equal to unity and all other elements equal to zero).

For this linesy problem the matrices Hst are, of course,
all =2qual to zero and the matrices Gs are eqgual to Ts’
ard independent of the value of <, The numerator T(6)

is 2 auadratic function of ©. A sugzested computational
procedure is Lo use the linesr approximation to Sr(@)

and the quadratic "approximation' to T(6). We can then
reduce the fractional objective functlion td a linear one
wlth guadratic constraint, and this transforms by using
other krown tricks to a quadratic program. The advantage
iz, of course, that linear equality and inequality con-
straints on the GS can be lncorporated very easily,

3.3 Nommetric Scaling

One of the more interesting applications 1is an
alternative parametrization of nonmetric multidimensional

scaling, This can be written as

D
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wow bthe T are foe2 doucly contered versions of the edges
of the polyhedrsz1l ~o=2 10 matrix space containing the
adiwiseible solut o, Zrsarve that this problem is both
linear and horoozr 2oz 204 consequently we use the

numerator T(¢) ~=v= - = AfTfayent senge 4s 1n our

b

previous, nononoz i3, =xamples. In this case we
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cannot do witoouT T, o previous cases we could minimize

.

S () witioss © o -olvicz T/0), Observe also that we have
to reauirz - > [ zrz.  ODther homogeneous models which

do ot revilvs < 5 T oavz slzo rossible (DeLeeuw 1973,1974).

Jlesrl o siilTionsl exzmulas can be generated by

the woo ocrzersetlions trnat our f2velovment 210 applles

to the scslzr product model, and, with the slight modifi-
cations mentioned in the appendix, to rectangular and
esymmetric matrices., More complicated function aij<@> can
he usad to define metric and nomnmetric verslions of
spherical, hyperbolic, and elliptic multidimensional
scallng,‘ Slightly more complicated functions of the %i(@)
car be used to define nonlinear versions of multiple
factor analysis. All this will be considered in later
Dapers.
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It is well that

Kiiown

A ocen be written In the form A =
and A a diagonal matrix. dJde are

In this decomposition 1f we make

perturbation of the form K = A +

are unequal

1
=
Ay

d

o= JTAX,

pX!

each real symmetric matrix

with X'X = X¥X' =1

interested 1n the changes

a small symmetric

Al

A=+ diag(T).
n =
pa
0 p
The matrix G 1s defined simply as H

order approximation 1s

N o= A+ diag(T) + diag(TH)

In element wigce notation

If all elements

1t can be proved rigorously that the
ues in A are analytic functlons of the 6ij' Define

The first order approximation 1s

NS)

I. The second

+ diag(TG)



L=

N o= A4 ;
B P S
1=1 =1
9! 7l 1l L n
NN N N 1 4 )
VAV Y Ry (it iake Fig
i=1 j=1 k=1 £=1 q#p
=1

If the 1wt of the matrix A are functions of parameters
@1’°”°’Gr’ then we find the formula's
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Although we do not need the results in this paper we give,
for reasons of completeness, a similar expression for the
first derivatives of the eigenvectors. The first order

expression is simply
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Pidiswer i L3 o EMnrassion once ‘vowould glve us
secont azrsivetives out they do not look very interesting
oosre ot oneesded 1o most applications. In a separate
rvaper these expressions will be generalized to the

nongymmetric and to the rectangulary case, We shall also
comment there on the problems counected with equal

eigenvalues,



