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Abstract

Multiple correspondence analysis is a popular data analysis technique, but its statistical
properties have not been studied so far. In this paper we linearize the statistics computed in
multiple correspondence analysis, and we use these linearizations to compute delta method
approximations to their standard errors. The results can be interpreted both in the standard
framework of random sampling from a hypothetical infinite population, or in the 'non-
stochastic' resampling framework based on postexperimental randomization.
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INTRODUCTION

The technique studied in this paper is known under a large number of different
names. We mention the most important ones. There is principal components of scale
analysis (Guttman, 1941, 1950; Lord, 1958), factorial analysis of qualitative data (Burt,
1950), second method of quantification (Hayashi, 1956), multiple correspondence analysis
(Benzécri, 1973, 1980; Cazes a.o., 1977; Lebart a.o., 1977), and homogeneity analysis
(Gifi, 1981a). The technique has been derived from various data analytic points of view,
starting either with ideas from multidimensional scaling, or from principal component
analysis, or from scale analysis. We shall not discuss these various derivations here. We
shall merely give a short outline of the one given by Gifi (1981a). Our paper starts with the
equations defining the technique, and studies the statistical properties of the solutions to
these equations. Various special cases have been studied before, but we shall attempt to
derive them in a more uniform framework.

TECHNIQUE

The basic data we start with are n observations on m discrete variables. Suppose
variable j can assume k; different values. We can code our data using indicator matrices

(also known as dummies). Indicator matrix Gj isnx kj. It consists of zeroes and ones, and
it has exactly one element equal to one in each row, indicating in which category of variable
j object i belongs. By concatenating the G; we obtain the n x K matrix G, with K the sum of
the k;j. The row sums of G are all equal to m, the column sums are collected in the diagonal

matrix D.

Multiple correspondence analysis can be defined as the application of correspondence
analysis (Benzécri, 1973, 1980; Greenacre, 1984) or dual scaling (Nishisato, 1980), or
canonical analysis (Kendall and Stuart, 1961, chapter 33) to the matrix G. This means that
we want to find an n x p matrix X of object scores and a K x p matrix Y of category
quantifications such that

GY = mXA, (1a)
G'X =DYA, (1b)



for some diagonal p x p matrix A. The number p is the dimensionality of the solution, it is
chosen by the user.

Equations (1a) and (1b) can be interpreted in terms of reciprocal averaging. If we
ignore the diagonal matrix A for the moment, then (1a) says that the score of an object is the
average of the quantifications of the categories the object is in. And (1b) says that the
quantifications of a category is the average of the scores of the objects in that category. The
effect of A seems to be that these relations in terms of averages are both not precisely true.

But we can rewrite (1a) and (1b) in such a way that at least one of these centroid principles
is true. Define Y = YA. Then

GY =mXA2, (2a)
GX =DY. (2b)

If we write (2b) as Y = D-1G'X, we see that category quantifications are in the centroid of
the scores of the objects in the categories. This is the scaling used in the multiple
correspondence analysis program HOMALS (Gifi, 1981b), together with the normalization
X'X = nl. Although scaling and normalization can be chosen in other ways too, for
example in such a way that the dual centroid principle obtains, we shall use the Gifi-
normalization in this paper too. Effectively (2a) and (2b) also define the alternating least
squares algorithm used by Gifi to solve for object scores and category quantifications. An
iteration starts with a current (X,Y). We then solve (2a) for a new X, with Y fixed at its
current value. In this first step we also solve for a new A2, but we do not require this matrix
to be diagonal, only upper-triangular. It follows that the new X is the Gram-Schmidt
orthogonalization of m-! GY. This new X is then used in (2b) to solve for a new Y, which
is not normalized in any way. It is easy to show that this procedure converges, and that A2
in fact converges to a diagonal matrix. We shall briefly indicate a convergence proof below.

Equations (la) and (1b) also show that multiple correspondence analysis is a
(weighted) singular value decomposition of G. We know that with each singular value
decomposition we can associate two dual eigenvalue problems in an natural way. If we
eliminate Y from (1a) and (1b) we obtain

P:X = XAZ2, (3)

with P« = m"1GD-1G'. Matrix Px, of order n x n, is the average of the m projectors P i=G;j

(G']Gj)'lG' ,, which project orthogonally on the space spanned by the columns of G;. Using



terminology and ideas from the analysis of variance or discriminant analysis field this could
be called the between-category space of variable j. It follows from (3) that multiple
correspondence analysis locates the n individuels in p-space in such a way that the within-
category squared distances are small compared to the between-category squared distances.
This relates the technique to multidimensional scaling, cluster analysis, and discriminant
analysis. The Gifi-system of nonlinear multivariate analysis (Gifi, 1981a, De Leeuw,
1984b) is based on the basic geometric interpretation.

On the other hand we can also eliminate X from (1a) and (1b) and obtain the
eigenvalue problem

CY =mDYAZ2, @)

with C = G'G. The K x K matrix C is called the Burt table in the French correspondence
analysis literature, after Burt (1950). It is really a supermatrix, with the k X k; tables le =

G'/Gy as elements. The C;; are, of course, the cross tables of variables j and 1, or the
bivariate marginals. We have D = diag(C), and the diagonal submatrices D; = G';G;, which
are themselves diagonal matrices, contain the univariate marginals of the variables. Solving
(4) means finding eigenvalues and eigenvectors of m-1D-1/2CD-1/2, This relates multiple
correspondence analysis to principal component analysis and other forms of canonical
analysis. Compare De Leeuw (1982) for the details.

Before we proceed we must clear up one ambiguous point. The singular value
problem (1a) and (1b) has, in general, min(n,K) one-dimensional solutions, from which
we can pick p solutions in a great many ways. We are interested in the solution that
corresponds with the p largest nontrivial singular values. The qualification 'nontrivial' is
needed, because (1a) and (1b) have m trivial solutions. One of them, in which the
corresponding column of both X and Y has all elements equal to one, has singular value
equal to one. Inspection of (3) shows that this is actually the largest singular value. It is
trivial, because it does not depend on the data in any way, only on our choice of coding the
data. It is always there. The other m - 1 trivial solutions correspond with singular values
equal to zero. They occur because the rank of G is always less than or equal to K - (m - 1).
The m - 1 dimensions in the null space of G occur, because the vector with alle elements
equal to one is in the column space of each of the individual Gj. This is, of course, all very
well known in analysis of variance or dummy-variable contexts.

We now show that our alternating least squares algorithm, based on (2a) and (2b),
actually converges to the solution we want, provided we introduce one small adjustment.



The proof is simple, because it merely consists of establishing the equivalence of our
algorithm to the direct iteration method with orthogonalization for computing eigenvalues
and eigenvectors of P«. This method is very well known, and has been studied in great
detail (Rutishauser, 1969, 1970; Stewart, 1969). In order to avoid convergence to the
largest (trivial) singular value it suffices, theoretically, to start with an initial X orthogonal
to the trivial solution, i.e. in deviations from the mean. Because of accumulation of round-
off in actual computation we transform each new X to deviations from the mean during
iteration. The known results, and this small adjustment, suffice to prove convergence to the
solution we want. This is true even in the case in which there are multiple singular values.
In this paper we apply statistical large sample theory to the equations of multiple
correspondence analysis, assuming that n is large. This makes it convenient to concen trate
on (4), and to think of the elements of Y and A2 as the basic 'parameters’ that are estimated.
There is a slightly different way to define C and D which is better for our purposes. The m
variables define a single multivariable which can assume R =k x ... x k,, different values.
The values are called profiles. Each profile corresponds with a binary vector of length K,
indicating the categories of the m variables in the profile. The coding of profile r is a K-
element vector g, which is the direct sum of the m subvectors of length k; defined for each
of the variables. We can compare this with the coding used in contingency table analysis

and log-linear analysis, where profiles are represented as direct products. Now suppose
profile r occurs n; times in the data. Let p, = n/n. Redefine C and D as

R

C= X p&sgr (52)
r=1
) R

D =diag(C) = rz_lerr, (5b)

where H, = diag(g,g';). Of course (5) redefines C and D merely by dividing by n. It
follows from (1a) and (1b), by the way, that objects having the same profile get the same
object score. Thus the singular value problem could be reformulated in terms of profile
scores, using an R x K matrix G, with weights for the rows equal to the number of times
the profile has occurred in the data. This formulation makes all the quantities computed by
multiple correspondence analysis a function of the R-element vector of proportions p,
which is very convenient for statistical purposes. For computational purposes we prefer the
formulation in terms of an n x K matrix, because in most applications of multiple
correspondence analysis (though certainly not in all) n is much smaller than R. In this paper



we start by ignoring this choice, and concentrate on Y and A2, Statistical properties of the
profile scores will be studied at a later stage.

LINEAR APPROXIMATION
For convenience we rewrite (4) as
CY =mDYQ, (6)

with C and D now defined by (5a) and (5b), and with Q short for A2. We also fix the
normalization of Y by requiring

Y'DY =mQQ. )

The matrices A; = Y';D;Y; are called discrimination matrices in De Leeuw (1984b). They
measure the between-category variance for variable j. The average of the A, is equal to €.
Standard large sample theory is based on linear approximation. We compute these
linear approximations to Y and €2, which are functions of p, in the neighborhood of a
vector %t. The formulas follow directly from perturbation theory of eigenvalue problems,
which is reviewed, for example, by Wilkinson (1965, chapter 2), and which is discussed
most fully by Kato (1970) or Baumgirtel (1972). In order to derive the formulas we define,
for any nonzero isolated singular value Ag, X = (g'yo)/mAg and z, = (y'sH,yg)/m. Of
course all quantities we define are functions of p. In our expansions we shall indicate that
they are evaluated at p = 7t by using italic. For the linear approximation of an isolated

nonzero eigenvalue we have the simple formula
R
g = O + r2‘,_1(x2rs -Zx) (pr-w)+o(lp-mll). ®)

Observe that, according to our normalizations,

R 5 R
)Y lnrx s = E:Inﬁrs = ;. ©)

=



The formula for the approximation of the corresponding eigenvectors is somewhat more
complicated. It is

R
Ys=Yst rZ_I(Pr - Tp) {a)s'l(l/Zers - Zyg) s -

t%s (02, - 0g@y) "1 Ahxesxy - Oszrspyy} +0( -1 1). (10)

These linear approximations can be used for many purposes. Gifi (1981a) shows that we
can use them to approximate the effect of leaving out objects, categories, or variables. This
often gives more satisfactory results than the more exact, but also more conservative,
approach based on inequalities also derived by Gifi. We shall use (8) and (10) for large
sample purposes.

DELTA METHOD

If we want to compute asymptotic confidence regions for the eigenvalues we can do
this directly from (8) by using the delta method (Rao, 1965, section 6a.2, or Tiago de

Oliveira, 1982). If we assume simple multinomial sampling then the delta method,
combined with the multivariate Moivre-Laplace central limit theorem, shows that n1/2 (g -

@) is asymptotically multivariate normal, with means equal to zero, and disperion
R 2 2
I;__17‘% (%15 - Zrg) (%1 - 2 (11)

We use the convention of underlining random variables (Hemelrijk, 1966). Thus g is the
observed eigenvalue under simple random sampling. Other assumptions which make p
asymptotically normal could also be used, but generally they result in different expressions
for the covariances (Van Praag, De Leeuw, and Kloek, 1986).

The covariance matrix in (11) can be estimated very easily. We can form the matrix
with elements x2; - zj, which has a row for each individuel, and compute its 'sample
covariance matrix. Because of (9) the matrix is already in deviations from the column mean.
We could also form x2 - z-, a matrix with a row for each profile, and compute the
dispersion matrix using weights p;. Wichever is more convenient. The dispersion matrix
can be used to draw confidence ellipsoids or intervals, and to perform simple tests. If
performing such tests we have to be careful, however. Our derivation of the linear



approximations assumed that the eigenvalues were isolated and nonzero. Thus hypotheses
which assume that population eigenvalues are zero or are equal require additional analysis.

We now discuss the dispersion of the asymptotic normal distribution of n1/2 (y, - ).
Its form follows directly from (10), but it does not look very appetizing and we omit the
precise formula. It is clear that we can again estimate it by computing the sample covariance
matrix of a matrix, given essentially by (10), which has columns corresponding to the
parameters and which has either n or R rows. Of course we may not need the compleet
dispersion matrix. For p dimensions there are Kp parameters, and this defines a rather large
matrix in most cases. It is suggested in Gifi (1981) that each of the K categories is used to
compute its own ellipse, ignoring all between category covariances. This is very convenient
for plotting, but in some cases it can be misleading. In other cases if may be preferable to
compute the K x K dispersion matrices for each dimension separately, ignoring all between
dimension covariance. We also have to remember, of course, that computing confidence
ellipsoids for each point separately in general gives different information than computing a
confidence ellipsoid for all parameters simultaneously and plotting its low-dimensional
projections.

SPECIAL CASES

Some special cases of multiple correspondence analysis are mentioned separately in
this section. This is either because statistical results have already been derived by others in
these special cases, or because important simplifications are possible of our previous
results.

First consider the case m = 2. Multiple correspondence analysis becomes equivalent
to ordinary correspondence analysis or canonical analysis of a contingency table. Delta
method results essentially equivalent to our results have been derived by O'Neill (1978a,
1978b, 1981) and Haberman (1981). In correspondence analysis we do not use the Burt
table, but we compute singular values and singular vectors of D;-1/2C,D,1/2, This

singular value problem is not exactly identical to our Burt table eigenproblem, but the
relationship is very close indeed. Suppose k; 2 ky. Then there are ko singular values s, all

nonnegative, with the largest one equal to unity. The pairs of corresponding singular
vectors are (yi,Yos)- The eigenvalues of the Burt table are, in this case, the ko values 1/2 (1
+7v,) with eigenvector (yjq.yos), the ko values 1/2 (1 - ¥,) with eigenvector (y,0), where
y'Dyy;s = O for all s. Thus in a sense, there are actually only k, different solutions.



Another important special case has k; =2 for all j. In this case the Burt table has m +

1 nonzero eigenvalues, of which one is the trivial one equal to unity. The remaining m
eigenvalues are the eigenvalues of the matrix of point correlations (phi coefficients) between
the m binary variables. The eigenvectors yg consist of m pieces of two elements each. The
elements are determined, up to a scale factor, by the requirement that they must be
orthogonal to the corresponding two-element vector of marginal frequencies. The scale
factor turn out to be the elements of the eigenvector of the matrix of phi-coefficients. Thus
in this case multiple correspondence analysis is principal component analysis of phi
coefficients.

These two special cases have an important property in common. This is analyzed
algebraically by De Leeuw (1982). Suppose that there exist k; x k; matrices Y; such that
Y';D;Y; =1Iand C;Y; = D;Y;I'; for all j and 1, where I'j; is diagonal. If m =2 orif kj = 2 for
all j, then this condition is trivially satisfied. De Leeuw shows that it is also true for a
continuous multinormal distribution in a 'continuous Burt table', which means that it will
by approximately true for a discreticized multinormal. If we take corresponding columns s
from all Y, then the system of scores (yjs,....yms) linearizes all bivariate regressions. It
turns out that in many applications approximate linearizing systems exist. If they exist
exactly, then multiple correspondence analysis will find them. The successive systems of
scores with the regression linearizing properties are usually similar to orthogonal
polynomials. If we order the scores in the appropriate way, we find that scores in yjg
change sign exactly s times, and that zeroes of successive systems are interlaced. This is
connected with the theory of fotal positivity, which has been applied to correspondence
analysis by Schriever (1985).

There is another very important consequence of the existence of a system of scores
that linearizes all bivariate regressions. Suppose (¥1,....Ym) is such a system, the dot
indicates again that we are in the random sampling framework and have assumed the
system to exist at p = &. The corresponding correlation coefficients are p;=y',Cjy. We now
linearize the correlation coefficient computed by using the multiple correspondence analysis
scores at p, close to w. This gives

R
Pj1= P51+ E";ﬁpf - 10 {¥iE5p1 - 172p51 O'iE"pj + YiIE'wD} +o (1 p-m ). (12)

In formula (12) the ET;; are the (j,1) submatrices of g.g'.. The really interesting property of
j 8r g y

(12) is that we get the same linearization of the correlation coefficient if we consider the



scores as fixed in stead of as a function of the data. This is a consequence of the linearity,
which was already discovered by Pearson in 1906 (cf De Leeuw, 1983a, for references and
discussion).

Formula (12) has some important applications. Methods for the analysis of
correlation coefficients usually assume multivariate normality, which means that they
assume linear regressions. Pearson and his pupils already pointed out early in this century
that the dispersion matrix of the correlation coefficients can be estmated quite easily without
assuming normality by using fourth order product moments. The relevant formula have
been given for the first time by Isserlis (1916), they are reviewed by De Leeuw (1983b). Of
course they can also be used for categorical or ordinal variables, but they assume that the
scores for the categories are known. Formula (12) implies that if we assume that the
regressions can be linearized, then we can apply multiple correspondence analysis to
compute the appropriate scores, and we can use Isserlis formula on the induced
correlations. This gives consistent estimates of the parameters describing the correlation and
regression coefficients in structural models, path models, and so on. Of course the
assumption that the regressions can be linearized is much weaker than the assumption that
the regressions are linear for given scores. It is very much weaker than the assumption of
multivariate normality, which does not even make sense in situations with truly categorical
data. The combination of multiple correspondence analysis with programs for fitting
correlation models look promising.

TESTING PARTIAL INDEPENDENCE

Multiple correspondence analysis can also be used to test the hypothesis that one
variable is pairwise independent of all others. The interpretation of multiple correspondence
analysis in these terms may shed some light on the various statistics that are computed by
the technique. The results in this section are a simple application of the general linearization
formulas derived above.

If a variable, say variable j, is independent of all others, then multiple correspondence
analysis will find k; - 1 eigenvalues equal to 1/m. The corresponding eigenvectors yg have
zero elements for categories of all variables other than j. Of course we also have the 'trivial
eigenvector, with alle elements equal to one, and an additional m - 1 trivial eigenvalues
equal to zero. There remain (K - m) - (k; - 1) nontrivial eigenvalues between zero and one,

whose eigenvectors have zero elements for alle categories of variable j. We now apply (10)



to yjs, the segment of ys corresponding to the categories of variable j. We suppose that @ #
1/m. Because Yis = 0 and, in fact, Yit# 0 only if ax = 1/m, we find after some manipulation

R
Yis = -0 (! - @g) -1 (D1 - ujuy) { r2=1(pr-1tr) girg'r}ys +ollp-mll). (13)

Using the delta method on (13) shows immediately that nl/2y;; is asymptotically normal

with mean zero, and with asymptotic dispersion

V= Kzs (Dj’1 - uju'j), (14)
where
K = ag/(mr! - o). (15)

In both (13) and (14) u; is a vector with all elements equal to one. From (14) we see that the

dispersions of the category quantifications are proportional to the reciprocals of the
marginal frequencies, with a proportionality factor that indicates haw far @g deviates from

m-l, An easy consequence of (14) is that
ny'jsDiyis L lc2sx2(kj - D). (16)

Of course K can be estimated consistently by inserting sample eigenvalues. Result (16),
which holds in the case of independence of variable j from the rest (provided that A¢ # m1),
is our final result in this section. It provides us with the asymptotic distribution of what Gifi
(1981) calls the discrimination measures, i.e. the diagonal elements of the discrimination
matrices. It suggests a simple test of the partial independence hypothesis, and a scale on
which we can compare the category quantifications.

COMPLETE INDEPENDENCE

If all variables are independent of each other, then the results in the previous sections do not
apply any more. All nontrivial population eigenvalues are equal to m-1. A first result in this
case was given by De Leeuw (1973). It is



K-
n Zlm(mcos-l)2= p Zi x2j1~ amn
s= i<

This formula connects the sum of squares of the eigenvalues, or rather their variance, with
the sum of all m over 2 off-diagonal bivariate chi-squares. In ordinary correspondence
analysis the connection between the canonical correlations of a contingency table and the
chi-square of that table is, of course, well known. Although (17) is interesting, its practical
applicability seems limited.

If all variables are independent our asymptotics takes a different route. We study the

matrix D-1/2CD-1/2, Tt is convenient to eliminate the trivial solutions first. We do this by
using matrices W; with W';D;W; = I. Moreover the first column of Wj consists of ones.

Then form C, with submatrices Cj = W';C;;W). The eigenvalues of C/m are the same as our
original wg, but now the diagonal submatrices of C are identities. Moreover the first row
and column of each C;) vanishes, except for the very first element, which is one. By leaving
out the m first columns we get a matrix of order K - m, whose eigenvalues are all nontrivial
. Our key result in this case, which is proved in the same way as the usual chi-squares
partitioning results for ordinary two-way tables, is that the elements in the off-diagonal
submatrices are all asymptotically independent standard normal. This result assumes
complete independence of all variables, it is not enough to assume complete bivariate
independence. This result easily implies (17), by the way.

Because eigenvalues are continuous functions of the matrix elements, it follows that
the eigenvalues are distributed asymptotically as the eigenvalues of a matrix with
independent standard normal variables in each of the off-diagonal blocks. This distribution
obviously depends only on the vector (kj,...,kp,), but not on the marginals. This generalizes
familiar results from the two-way case (given, for instance, in Lebart, 1976). Two-way
results are simpler, because tabulated results for standard Wishart matrix eigenvalues can be
used. Very few useful results are known about the asymptotic distribution of the
eigenvectors in the case of complete independence.

VERY LARGE MATRICES

If K, the order of C and D, which is equal to the total number of categories over all
variables, is very large, then it becomes interesting to study the limit distribution of the



eigenvalues. By this we mean the function F (x), which is equal to the number of nontrivial
eigenvalues £ x, divided by K - m. This type of limit distribution has been studied by many
authors. We mention Wachter (1978) and Jonsson (1982), who also give many references
to earlier work. We assume, in order to apply these results, that all variables are
independent. Thus we remain in the 'null'-case. The basic result is that if (k - m)/n
converges to some number 7 if both K - m and n tend to infinity, then the distribution of the
eigenvalues converges to a distribution with semi-circle density. The support and the scale
of the density both depend on 1. Possible generalizations have been considered by Wachter
(1976), who has also indicated the data analytic applications of his results (1975).

We do not have any experience yet with practical applications of eigenvalue limit
distributions. This is also because our multiple correspondence analysis programs do not
compute all eigenvalues, but only the first two or three. Moreover testing the null-
hypothesis of complete independence is, in itself, rarely uninteresting, because it will
usually be very far off the mark. It is too null.

NONSTOCHASTIC APPROACHES

Our results are based on linear approximation and the delta method. We assume that n
is very large, and that the objects are a simple random sample from the population. In very
many applications, certainly in the social and behavioural sciences, the model of a simple
random sample (from an infinite hypothetical population) does not apply, or is very far-
fetched indeed. Compare Freedman and Lane (1983), De Leeuw (1984a). For such
situations some approaches have been developed which still assume that n is large, but
which do not use the idea that the data 'are’' in some sense a 'sample’. They are all based on
some form of post-experimental randomization.

The delta method results on asymptotic normality, for instance, can be reformulated
in the framework of the bootstrap distribution. The bootstrap distribution (Efron, 1979,
1982) is the distribution of the statistic under random sampling with replacement from the
data. The bootstrap distribution for resamples of size n can be approximated by a
multivariate normal, and this is what the delta method does. In more complicated cases it
may be necessary to use the Monte Carlo version of the bootstrap, which actually draws a
number of resamples from the data. The Monte Carlo version of the bootstrap has been
used in (multiple) correspondence analysis by Gifi (1981) and Greenacre (1984). Gifi
shows that there is in general a very good correspondence between Monte Carlo bootstrap



and delta method results, even if the number of resamples is as small as ten. In stead of the
bootstrap distribution we can also use the subsampling distribution (Hartigan, 1971),
which constructs its randomization by including each observation in the resample with
probability 1/2.

We derived a test for partial independence from the delta method results. This means
that we can imbed it in the same way in a resampling framework. But for significance
testing (‘'null' situations) the alternative resampling framework that uses permutations is
perhaps most natural. We study the distribution of our statistics under random permutations
of the n observations on the variable whose independence from the other we want to test.
The combinatorial or permutational central limit theorem gives us asymptotic normality of
the 'off-diagonal’ part of C (the cross table of variable j with all others). The diagonal parts
are, of course, fixed. From this point the delta method takes over, and we find the same
results as in the random sampling framework. The same thing is true for testing complete
independence. We now use independent random permutitions of the observations for each
of the m variables. This leaves the univariate marginals fixed, and gives a C with the same
asymptotic distribution as under random sampling from an infinite population. Compare De
Leeuw and Van der Burg (1986).

Freedman and Lane (1983) call this a nonstochastic interpretation of significance
testing. It is very similar in spirit to the approach of randomization testing advocated, for
instance, by Edgington (1980). It may not appeal to statisticians who emphasize primacy
of, preferably parametric, models, but it seems a logically sound way to study a modes and
well-defined question. In Gifi (1981) resampling and permutation methods are introduced
as methods for stability analysis, i.e. as statistical or Monte Carlo methods to assess the
size of derivatives and differentials. Basu (1980) criticizes the inferential properties of pest-
experimental randomization procedures, but this criticism is hardly relevant in situations
where no inference (from sample to population) is intended.

OBJECT SCORE ASYMPTOTICS

We have linearized category quantifications and eigenvalues, but not object scores. If
we remember, however, the definition x ¢ = (g'ys)/mAg of the profile scores, then it
becomes immediately clear that these profile scores can be linearized too, and that we can
use our previous formulas to obtain the required results. This does not add anything new,
and we omit the details.



In some cases, however, another kind of asymptotics is called for. Suppose n is
fixed, and m tends to infinity. We 'sample' from a universe of variables. It now becomes

convenient to use the dual eigenproblem (3). Because of the discreteness of our variables
projector Pj, of rank kj, can assume only a finite number of values (the number of ways n

balls can be placed in k; cells). Suppose, for simplicity, that all variables have the same
number of categories. Then P« = X q,P,, where the P, are the possible values and g, are

their relative frequencies. In this form the standard perturbation (or linearization) results for
eigenanalysis apply again. No details are presented here, because by now the principles are
clear. Nonstochastic interpretations can also be given.

The type of asymptotics we apply depends, obviously, on the relative size of n and m
(or n and K). If both n and K are very large, which is a common situation in multiple
correspondence analysis, the choice between the two becomes complicated. In fact here we
only have results for the relatively unintersting null-case of complete independence, and
these results are moreover limited to eigenvalues. It is clear that additional results are
moreover limited to eigenvalues. It is clear that additional results in this direction are
needed, but it is not yet obvious how one should proceed to derive useful approximation
results in these double limit cases.
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