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Abstract

In this short paper we extend the random coefficient
regression model for multilevel analysis, that has been
proposed recently by Mason, Wong & Entwisle and by De
Leeuw & Kreft, to a random coefficient path model. We
show that statistical and computational results derived
for the earlier model can still be applied, provided the
path coefficients of different endogeneous variables are

independent.
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INTRODUCTION

A hierarchical regression model has two or more

regression levels. The regression coefficients from a
particular level are the dependent variables for the
regression on the next higher level. Such hierarchical
models have many applications in the social and beha-
vioural sciences. A particulary important application
in sociometry and in educational research is multilevel
analysis, 1in which the levels of the hierarchy corres-
ponds with different levels of aggregation of a set of
units. Levels can be, for instance, pupils - classes -
schools -+ neighbourhoods - towns -+ countries, etcetera.
For a more thorough discussion we refer to Streitberg
(1978).

Appropriate statistical models for multilevel analysis
have not been considered until quite recently. Streitberg
(1978) presents a linear model which takes the multilevel
structure into account. He assumes that the dispersion
matrix of the residuals has a particular interclass-
correlation form. But this implies that his models are
not hierarchical, because he does not really model the
higher levels explicit{ly. Several authors have
emphasized recently, that explicit modelling of both (or
all) 1levels 1is possible by using random coefficient.

regression models (Tate and Wongbundhit, 1983, Mason,
Wong, and Entwisle, 1983, De Leeuw and Kreft, 1985). Such

random coefficient regression models have been studied

fairly extensively in econometrics (Swamy, 1971,
Rosenberg, 1973, Spjgtvoll, 1977, Mundlak, 1978, Johnson,
1977, 1980, Chow, 1984, Johansen, 1984). In statistics
very similar models have often been presented in a Bayes
or empirical Bayes context (Lindley and Smith, 1972,
Smith, 1973, Polasek, 1984).

The general multilevel model of Mason, Wong, and Entwisle



(1983) and of De Leeuw and Kreft (1985) is a genuine two-
step regression model. To present it we adopt the conve-
nient formalism of underlining random variables (Hemel-
rijk, 1966). For individuals from group j we assume

Yy = ngj t ey with gy ™ N(O,o%I). This defines the
micro or within~group structure. The macro or between-
group structure is defined by Qj = @zj + gj, with gj N
N(0,Q). In the macro-equations © contains regression
coefficients, while zj are the measurements on the macro-
level regressors for group j. If we combine the two
levels into a single model we find Yy = xjezj + Qj’ where
Qj ~ N(O,XjQXj + o%I). This is the 'reduced' form of
the model which is used in the actual computations. Both
Mason, Wong, and Entwisle (1983) and De Leeuw and Kreft
(1985) discuss one-step and two-step ordinary least
squares methods, the Swamy-Rao weighted least squares
method, MINQUE estimates, and maximum likelihood esti-

mates for this multilevel model.

Although the model discussed above 1is certainly
interesting, it has two build-in restrictions of
generality. In the first place there is only one micro-
level dependent variable, and in the second place both
micro-level and macro-level independent variables are
considered as fixed. The first restriction is not a very
serious one, because in principle extension to a multi=-
variate linear model 1is straightforward. The second
restriction, however, seems a rather more serjious
limitation. It has been argued by De Leeuw and Kreft
(1985) that in educational research the assumption of
fixed regressors at the micro-level 1is not very
appropriate, because the sampling interpretation
connected with fixed independent variables is often not
realistic. The independent variables often have the
same sampling characteristics as the dependent variables,
and it seldom makes sense to assume that they are measured

without error. Thus we need to get closer to the



framework of structural covariance analysis, in which all
variables are random and in which the distinction between
dependent and independent variables is replaced by a more
flexible path model.

In this paper we propose a general multilevel path model,
and we indicate that the multilevel regression model of
Mason, Wong and Entwisle (1983) and Leeuw and Kreft
(1985) is a very special case. Nevertheless we also show
that computational techniques used for the earlier
multilevel model can be used almost without modification
in this more general path model. We shall not go into the
many possibilities offered by our more general approach,
but we shall indicate some promising avenues for further

research.

PATH MODEL

We present our results in the context of the following
simple path model. Possible generalizations will be

indicated below. Suppose Xij (i=1,....,n;3j=1,....,m)
are observable random variables, and ijz (j=1,....,m;
2=1,....,m;j>2) are unobservable or latent variables.

We assume that for j > 1 we have a conditional density

of the form

p(yj|y1,....,yj_1,A) = N(Yjaj,ogl). (1)
Thus the conditional densities are spherical normal, with
expectation Yjaj' Here Yj is then n x (j - 1) matrix

containing the 'previous' observed variables, and a; is

row j of A (more precisely the first j - 1 elements of

that row, the others are zero). We also assume that

p(y;|2) = N(0,021), (2)

and we assume that the rows of A are independent normals,

with



p(aj) = N(aerj)- (3)

We 1integrate out the aa, and find the conditional

densities

. s, Y = N(Y.o.,Y.Q.Y! + 02I). 4
p(yylyy Yi.1) = N(Yjay,Y50,¥0 + 021) (4)
Equation (&) 1is our main result. It shows that

factorization (1), which characterizes recursive path
models, with independent errors, carries over to the
random coefficient path model, provided the coefficients

corresponding with different variables are independent.

The model given above is of some interest, perhaps also
outside the multilevel context. We briefly indicate some
possible generalizations. In the first place we can
suppose, without further ado, that the exogeneous
variable Y is multidimensional. This merely changes (2)
to p(y1|A) = N(O,Z). In the second place each of the Yj
could be a block of variables. This complicates the
notation, but not the theory, which becomes a straight-
forward generalization of theory for (fixed parameter)
block recursive models. Thirdly there may be errors in
variables, i.e. our theory has to be extended to LISREL
or PLS models. This will requireosome additional effort,
it is not merely a matter of nftation. In the fourth
place we must keep various special cases in mind. If all
Q. are zero, for instance, the model becomes a fixed co-
efficient model. If we want certain additional regression
coefficients to be zero (as in incomplete recursive path
models) we set corresponding ajz equal to zero, together
with the corresponding diagonal element of Qj. Of course

we can also set o¢., = 0 without assuming in addition that

J4
wj££ = 0. All these hypotheses are, at least in prin-
ciple, testable by standard methods. A fifth generaliz-
ation that must be mentioned assumes that in addition to

the a; also the g% are random variables. Such refinements



can be incorporated using theory presented by Aragon
(1985). And finally we must consider the possibility that
the rows of A are correlated. This will make the theory
much more complicated, but in some cases more realistic.
Results on 'transmitted errors', discussed by Mundlak
(1978), fit into this framework.

MULTILEVEL ASPECTS

The path model (4) is derived for a single population,
and a sample from this population. If we have more than
one population, we can use similar models for each popu-
lation, and each population has its own parameters «., Q.,

J J
and 02. This does not really change anything, but matters

becomi more interesting if the parameters in the different
populations are related. In multilevel models, for in-
stance, we use restrictions on the parameters to specify
a model for the macro-level. Using the index v =1,...,N
for populations (i.e. schools, neighborhoods, etc), we
impose the restrictions ij = Qj and we want the ajv to
be a linear function of some fixed variables describing
the macro-level units (populations). With these restric-
tions, and in the special case m = 2, path model (4)
becomes identical to the multilevel model of Mason, Wong,
and Entwisle (1983) and of De Leeuw and Kreft (1985).:
The Ejv (v=1,...,N) are independent, and have distribu-
tion N(ezjV,Qj). It is clear that our more general
approach offers many more possibilities for modelling on
a macro-level, certainly if we take the possible gene-

ralizations from the previous section into account.

At the same time we see precise nature of multilevel
models of this type somewhat more clearly. The issue of
random coefficients and/or random regressors is quite ir-
relevant for the general idea. We have macro-levels,

which define populations from which the micro-level units



are sampled. The micro-models are defined for each popu-
lation separately. They have parameters, and the macro-
model is actually a model for these parameters. Of course
the approach can be extended to the case in which there
are more than two 1levels. This defines the so-called
hierarchical models, which have been dﬂiussed by Lindley

and Smith, Leamer, Polasek, and others. The models have
both frequentist and Bayesian interpretations. But both
for Bayesians and for frequentists they are most appro-
priate if the sampling framework consists of simple
random samples from fixed populations. Other multilevel
models will be necessary for cluster samples, and multi-

stage samples.

ESTIMATION

We can be very brief about estimation methods. The com-
plete range of procedures discussed by Mason, Wong, and
Entwisle (1983) and by De Leeuw and Kreft (1985) applies
without any modification, at least if the parameters of
the m 'single equations' (4) are neatly separated. The
only restrictions on the parameters must be 'within-equa-
tions', there must be no restrictions 'between-equa-
tions'. This is similar to the requirement that the rows
of A must be independent. Of course 'between-population':
restrictions are allowed, in fact they are even essential
to make multilevel analysis possible. But given the sep-
aration of the equations we can do one-step and two-step
unweighted least squares, we can compute the Rao-Swamy
weighted least squares estimates, MINQUE estimates, and
we can compute maximum likelihood estimates in wvarious
ways. For the details we refer to the publications men-
tioned earlier in this section, and to the references

given in these publications.
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