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1: Introduction

In this note we discuss a number of nonparametric methods to
compute bias, standard error, or (more generally) sampling distributions
of estimates. We only discuss them in the very simple case of a binomial
proportion (a Bernouilli variable). Extensions to more complicated
situations are quite straightforward, however. First we can extend to
a multinomial vector, which in a sense already gives maximum generality
in the idenependent, identically distrbuted case. Then we can extend to
functions of the empirical distribution function, which gives some additional

elegance to the formulations, but not much more generaiity.

2: Delta method

Suppose Py is a binomial proportion, based on n replications. We

1
imbed it in a sequence Py such that nz(pn -m) 5 ¥{0,m(1 -w)), where

L denotes convergence in law (= weak convergence of measures). This

can be done by the classical de Moivre-Laplace central 1imit theorem.
Now suppose ¢ is a real-valued function which is differentiable in

7. Then n%(¢(9n) - ¢(m)) e N{0,m(1 -m)(¢"(m))2}. This gives a (first

order) approximation to the sampling distribution of ¢(En). It also

implies that for the variance of the estimate

nWVAR(¢(p,)) = =(1 - m)(¢'(n))? + o(1). |

This requires more assumptions on ¢, of course (basically uniform

integrability, i.e. boundedness conditions on ¢). The delta method:

estimates the standard error by using

Pl = B) (8" (2p))% = (1 = m)(a" (m) P+ 0 (1),

which of course requires continuous differentiability of ¢ near .
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The delta method can also be used for bias correction. We use the

expansion

-1

40t (m)z2 + o (!

)s

(En - n). This expansion has been justified in a famous

6(p,) = ¢(n) + 029" (m)z, + In

nof=

where z, = fi
1941 paper by Mann and Wald (Annals of Mathemtical Statistics), also by

Chernoff (1956, same journal). Taking expectations on both sides gives

1 1).

E(o(py)) = o(m) + 3n""¢" " (m)n(1l - =) + o(n”

Thus

n BIAS(¢(p,)) = ¢' ' (m)m(1 - =) + o(1),

and we can estimate the bias by using

2" (m)m(1 = m) + 0p(1),

using two times continuous differentianility.

30" (py)p,(1 = py)

A11 this extremely simple and straightforward. It can be applied
very easily to correspondence analysis (cf Gifi), and it is implemented
in our program ANACOR. A possible disadvantage of the delta method is
that it requires computation of the first and second derivatives of ¢,
which can be quite demanding computationally in more complicated situations.
Another disadvantage is that the results of the delta method are tied
to the binomial (or multinomial) model. Although this model is nonparametric,
it does suppose the framework of repeated indenendent trials. If this

framework does not apply, the delta method does not make much sense.

3: The jack-knife

The idea behind the jackknife is to delete one observation at a time,
and recompute the estimate for each of the resulting n reduced samples of

size n - 1. One possibility is approximate the sampling distribution of
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the statistic by the empirical distribution of the pseudo-values (cf below).
More modestly we can use the pseudo-values to estimate standard error and

bias.

In the binomial case we must compute the n values obtained by
deleting one Bernouilli trial. But we can only delete either a success
or a failure, thus the resulting value can be either ¢((ngn ~ 1)/(n - 1))

or ¢(nEn/(n - 1)). Or, to put it differently, we observe P, times

6(py, + 7ep(By = 1)) and (1 - p ) times o(p, + wop(p, - 0)). The pseudo-

values are p times n¢(2n) - (n - 1)¢(En + E%T(En - 1)) and (1 - Bn) times
1

ne(p,) - (n - 1)e(p, + #710,)-

In the more general multinomial case p_ s a vector with elements Pin:

1 .

The pseudo-values are n¢(gn) - (n - 1)¢(En + ﬁ:T(En - ej))’ which are
observed Pin times. Here the e, are the unit vectors of length m, and the
pseudo-values assume only m different values. This may be a bit small for
a satisfactory approximation to the sampling distribution of ¢(En).

To introduce the jack-knife estimates of standard error and bias
we define ¢1(£n) and ¢0(En) as the two possible reduced values (deleting
a success or a failure). The jack-knife estimate of the bias is
BIAS;(4(p,)) = (n - 1)ip,o1(py) + (1 - p)og(p,) = (2,
and the jack-knife estimate of the sampling variance is

VAR](¢(En)) = (n - 1) VAR(pseudovalues).

In the Bernouilli case these are asymptotically correct estimates
of the population quantities, which (a) do not require computation of

derivatives, (b) have some data analytic value. By this last statement we
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mean that the question 'what happend to our results if one observation
is deleted' is interesting, even if we do not want to commit ourselves
to the model of repeated independent trials. Of course in the Bernouilli
case there are only two pseudo-values, which is not interesting. In the
multivariate case the number of possible profiles is usually even larger

than the number of observations, so the situation is quite different.

Gifi also discusses a randomized version of the jack-knife. There

are also more complicated versions which eliminate higher-order bias.

4: The bootstrap

The idea behind the bootstrap is that we approximate the sampling
distribution of the estimate by sampling with replacement from the
empirical distribution function of the observations. That this approximation
works has been proved, for example, in a interesting recent paper by
Bretagnolle (Ann Inst H Poincare, 1983). Again we are mainly interested
in using the bootstrap as a bias and sampling variance estimator, and as

a data analytic tool.

Some recent references, not mentioned in Gifi, are Efron (Biometrika-
1981, 68, 589-99), Efron (The jackknife, the bootstrap, and other resampling
plans, Philadelphia, SIAM, 1982), Parr (Biometrika, 1983, 70, 719-722).

It is clear that the bootstrap interpolates by using many more points
that the jack-knife. This makes it more reliable, and also more costly, in

most cases.
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Again we concentrate on the Bernouilli case. The bootstrap distributien:

)n—m

gives resample value ¢(m/n) probability (;) m(1 - . Thus, in general,

Balt ™ By

there are n + 1 different resample values, and not just two as for the

jackknife.

The bootstrap bias estimate is

"

n
BIAS: (¢(p,)) = 77 () oD (D)p(1 - p )"

P, - o(py)3s

and the bootstrap sampling variance estimate is

v RB(¢(En)) = ﬁgj-VAR(resamp1e values).

For the jackknife we need a randomized version if either n or
the number of cells in the multinomial is too large. For the bootstrap
we need a randomized version is almost all practical situations. The idea
is to estimate mean and variance of resample values by actually drawing

independent samples from the multinomial with observed proportions.

Of course in the randomized case there are three parameters which
must be large. We have n, the sample size. We have N, the parameter of
the bootstrap distribution. And we have M, the number of random samples
of the bootstrap distribution. In the classical bootstrap n = N, and M

is infinity. In the paper by Bretagnolle N = O(n) and M is again infinity.

It seems to us that the randomized bootstrap is preferable to the
jackknife in typical multiple correspondence analysis situations, because
it is more smooth. But many theoretical and practical questions must

still be answered in this context.
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Additional Jackknife and bootstrap results

In this note we extend the results of Parr (Biometrika, 70, 1983,
719-722) to the multinomial case. Thus P, is an m-vector of observed
proportions, with expectation w. We usually omit subscript n, the number
of observations. The elements of p, are thus simply B, (a=1,...,m). We
study ¢<Bn)’ where ¢ is a real valued function having sufficiently many

continuous and bounded derivatives to make our expansions valid.

Jackknife results

For the jackknife we compute ¢ in the m points (np - ea)/(n -1) =

p+ H%T-(E_- e ). Here e is the unit vector with +1 as element &, and

zero everywhere else. Write 9, for the first partials of ¢, evaluated

at p, g _ for the second partials, and so on. Then
L _._.aB

o+ ooy (B - e)) = o+ (1) gypg - 6% + 3(n-1))] g, (p, - )
(B~ &) + (1) TIT g 402, - 8PN, - e“mg6 - %)
+ o((n—l)_3).

Here ¢ is short for ¢(En). The pseudo-values are
ng(p) = (n - 1o+ =27 (B - e)) = o - [ gy(p, - 8°) -

3n-1) T g, (- %) (e, - 6°T) -

1) PI10g,, 52, - "), - 67N - 6%°) + o((n-1)7)

If we write this pseudo-value as ¢ _(p), then the jackknife estimate is

I Bt (R) =8 = 3(n-1)7HT g ao 01 ARIT g, o ol (W) ).

Here A are the observed second order moments, and X are the observed

—Ry : —BYS
- GBYép sYS _

third order moments. Thus A = GBYEB - EBEY and AﬁYé Py ‘,Eﬁ

By
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97686 PgS &Y + 2p8p p.. The bias-estimate of the delta-method is

BIAS) = -3(n-1) V1] g 2.

Thus

(n-1)%(BIAS - BIAS,) = £ 11} TN W

To compute the jackknife variance estimate we first square the

pseudo-values ¢d(g), This gives

¢ (E) ) 9&_Y (RY Yy - (nvl)7¥§22 gﬁY(E -8 B)(BY - &%)
-1)- ZZZ'Q“B'QYG(RB - 6a8)(E.Y = 60‘Y)r(£5 - 50(6) + 0((n—l),/—l),.,\

Thus

1,#2(p) = 8% + 1199 0, - (n-1)7Tel] go 2 + (-1 T'EIT ggg g+ o((n-1)”

The variance of the pseudo-values consequently is

-1

VAR(s, (R)) = I 8,82 + (=1) 10T g9 1y s + o((n-1)7).

Because the delta-method variance estimate is

VAR) = (n-1)

D ZZ 959,252
and the jackknife variance estimate is

VAR = (n=1)"VAR(4, (p)),

—d
we find

(n-1)°(VARy - VAR)) = [TT g9 hg s + O(1).

Bootstrap results

For the bootstrap (at least the theoretical bootstrap) we compute¢ in
all vectors q, where ng is a vector of integers adding up to n. Define

(q - p). Then ¢(q) = ¢(p + n 2z), and thus



B3

-1 3/2

#(a) =g +n?) gz +n[)g 22 + 1Y 9upy2o2e2, *

*mﬁgwwg%%%+om*»

If w(q) is the multinomial probability of observing nq if sampling n
times from a multinomial with probability vector p, then the bootstrap

estimate is

Tw(a)e(a) = ¢ + 3 TE g oa o+ g0 0IE g Bt

?I n- ZZZZ GogysRagdys + Aoydas * ﬁaalayl + o(n”9).

The debiased bootstrap is

Bt e - P e@e(@) = o - 3 (DL g g - 5wl Gugdasy
’zlli’ﬁTnl-‘lT DAL Guges(Raghys * Aaylas * Roslay) * O 1)

Thus

n(n-1)(BIAS, - BIAS:) = - ¢ 17} Gopyrasy ﬂ LIEY 9ugys(Pagtis *

+ ) + 0(1).

Amyz\-ec‘i A G—B
For the Bootstrap variance estimate we need
$2(q) = ¢2~+~nf122 gg.zz + ln—ziizz zz2,22z +
& Jodgtatg T 4 TupdysZueivis

T3 -1 1 -3/2
Fan el 9.z, + 0 ell 9,022 + 30 TUANNl 8p,2,202,

z.zz. + n~3/2

n 9L20E guBY6~U*B~Y—ﬁ ) gugﬁvzuzﬁzv ¥
2
).

N

L
12
1 -2 -
gt LI 9,952,262, 25 + Ol
Thus
(@)e?(q) = o2 + n'If g a2 .+ n efT 4 2+
IIIT 9,00 shugys 3 AT Sg g, *

12 O Sgduge * ML 8,8 20, *

1.
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3L 8,5 g5 *o(N ).

Here A is short for » A _ +
—

A A . M
By S Aetvs T Auvies A oreover

+ A
—uéBY

(Tw(2)6(@))2 = 62 + 40 IT0E g 00 A oh o+ 0 loI] ook, +

_2).

1 -2 1 -2
§n Q}:ZE guBYAuBY * ﬁn QZXXX -gaBYSAaBYS + on
Thus

VAR, = T {Tw(q)e2(q) - (Iw(a)e(q))2} =

(0-1) 71T 8,800+ ey allT 98,5 (ugys ~ Aughys) *
1 11 ~

* n(n-l)222 gugﬂYAuBY ¥ §'n(n-1)XXXX 9,96vsupys * on

Thus

n(n-1) (VAR - VAR,) = 3TT0] 9 09 s(A 2o + A sha ) + 100 9 90 A 0

* L 8,85 60y * O1):

Remarks

The derivations above are heuristic (or formal), and not properly

justified. Justifications are possible by using the work of Bhattacharya
and Rao on Edgeworth expansions, or the work of Hurt on expansions of
moments. There may still be computational errors in the formulas, of

course. The formulas do not apply to the empirical bootstrap, which uses

samples to estimate the conditional expectations.
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Validity of the bootstrap

Validity can be defined in varioas ways. We have shown ébove that the
bootstrap and jackknife are valid, in the sense that they give the same
bias correction and variance estimates as the delta method to a high
degree of approximation. It also follows from the results above that
bootstrap and jackknife estimates have the same asymptotic distribution
as the oriainal estimate, which could also be interpreted as a form of

validity.

For the bootstrap another form of validity has been studied quite
thoroughly. If nq is multinomial, with parameters P, and n, then the
distribution of ¢(q) is called the bootstrap distrbution. We take a
random sample of size n from the empirical distrbution. The bootstrap
distribution is computed conditionally on the data, i.e. P, is
considered as fixed. It was already proved by Efron (Ann Stat, 1979, 1-26)
that the conditional distribution of ¢(9n)’ given P> converges to the

same 1imit as the distribution of ¢(p _), given n. This result has been

)
extended to t-statistics, the empirical process, the quantile process,

von Mises functionals by Bickel and Freedman (Abn Stat, 1981, 1196-1217)

and by Bretagnolle (Ann Inst Henri Poincaré, 1983, 281-296). In the case

of bootstrapping a mean or studenticized mean rate of convergence results
have been proved by Singh (Ann Statist, 1981, 1187-1195) and by Babu and
Singh (Ann Statist, 1983, 999-1003). They show that the deviation between

the distributions is O(n—%). In fact this remains true for the B-sample
empirical or Monte €arlo bootstrap, provided that B/n Tn n » «. HWe

conjecture that it is sufficient for validity in this case that B/n% Inn->w

1 1
or even that B/n® - « while B = 0(n? Tn n). Compare Freedman (Z. Wahrschein-

lichkeitstheorie, 1977, 1-11).
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A different, and perhaps equally important result, has been proved
by Beran (Ann Statist, 1982, 212-225). He shows that bootstrap estimates
(by which we mean the bootstrap distribution and transforms of the
bootstrap distrbution) are not only consistent, but actually efficient.
Here efficiency is in the LAM (Tocal asymptotically minimax) sense,
familiar from the work of Le Cam, Hajek, Ibragimov, Hasminskii, Hannan,

Fabian, Beran, Millar, Levit and so on.



Leave-one-out cross-validation technigues

Multinomial maximum likelihood estimation

We study models of the form v ¢ @, with @ an s-dimensional differentiable
manifold in R". We use a best asymptotically normal estimation technique ¢

to estimate w. Thus ¢ associates an estimate ¢(p) with each probability

m-1

vector p in S , the unit simplex in Rm.

Now suppose p is a vector of relative frequencies, constructed on the

basis of a simple random sample of size n. If we Teave out one observation

we change p to (np - ej)/(n -1)=p+ H%T(E - ej). Here e; is unit vector

j, and the observation we left out was in category j. The corresponding

1

estimate of = is o(p + H:T(R - e.)), and the predicted Tikelihood of the

e
J
omitted observation is ¢j(g_+ H%T(E-_ ej)). Because there are Ej observations

with 'value' ej the total predicted Tog-likelihood is

m
- 1 -
Lo(nsp) = j§1 By Tnos(p + 557(R - e5)).
Now
b.(p + —l—{p -e.)) = m, v L gi(p - e;) + o((n-l)_l).
e = n-1 Y%7
Here T is ¢j(B)’ and g; are the partials of 855 evaluated at p. It follows
that
T 1 7 -1
L) = 1 gy Inxy + 57 I (By/ng) g5(2 - ey) + ol(n-1) 7).

i ! ' s . = m., + dp. =7, + o0 (1).
If = is the 'true' value E(p), then TyoT op(l) an Eg " p( )
If the partials of ¢ are continuous at =, then also G =T + op(l), with
T the partials of ¢ at w. If we use, in addition, the fact that the

rows of T sum to zero, we see that



Ly(nsp) = Lo(p) - Lotrrs op((n-l)_l).

But, by consistency, tr r = s, the number of free parameters, or the
dimensionality of the manifold. In particular for a saturated model

T e S we have

Lo(n.p) = Lc(p) - %}% + op((n-l)-l).

If we have to choose from a number of different models UEIE
we choose ‘the one with the highest value of L (n.p). It is convenient

to use the saturated model for normalization purposes. Thus

2(n-1)(LS(n,E) - LQ(n,E)) = 2(n-1)(LS(p) - LQ(E)) -2(m-s-1) + op(l).

This can be written as
AQ("sE) = AQ(E) - 2KQ + op(l).

Here AQ(E) converges in law to chi square with K =m - s - 1 degrees of
freedom. Thus we can compare the predictive qualities of models by

subtracting two times their degrees of freedom from their chi squares.

It is irrelevant which best asymptotically normal estimate we use



Use of random sub-sampling for bias-correction,

estimation of standard error, and cross-validation.

We restrict ourselves again to multinomial situations. Random variables
X5 (i=1,2,...) are independent and identically distributed. They take

the unit vectors of length m as their values, and prob(li = ej) =Ty

The relative frequencies in a sample of size n are Py-

Now suppose g4 is another sequence of independent and identically distributed
random variables, moreover independent of all Xs Variable e. takes the

value one with probability a(and the value zero with probability 1 - &.

To estimate the distribution of ¢(p) we use the subsampling distribution,
which is the distribution of ¢(251X1/254)- Observe that we use x., without
underlining here. This means that the.subsamp11ng distribution is defined

conditionally on the data, which are fixed at their observed values X5

Let q = (Zgﬁxi)/(251). Then n%(g_— p) is asymptotically normal, with
mean zero, and with dispersion
v =M(P-pp')-

£2
Thus if we want to continue without unnecessary corrections we must take
& = 3. This is also very convenient in practice: we can do stability analysis
with a fair coin. It is clear that subsampling provides us with a valid
approximation to the sampling distribution. It is also clear that the
subsampling bias correction and standard error coincide with that provided

by the bootstrap.

Contrary to the bootstrap, the subsample method can also be used nicely

for cross validation (because it leaves out a portion of the data). We
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illustrate this for multinomial maximum likelihood estimation. The

maximum Tikelihood estimate is computed as ¢(q), and evaluated using

r= (}(1 - Ei)xi)/(i(l - 24))- Thus the predicted log-likelihood is
m

L(nsp) = 3

i ry Inés(a).

Simple asymptotic approximations, as for the leave-one-out method,

are not directly available, however.



On the multinomial jackknife

If we delete one observation we replace p by p + —%I-(p - ek). The jackknife

n

value is

B(p + = (P = ) v o(p) + =21 9'(p - €). (1)
with g the vector of partials of ¢ at p. If we define

he = (=) {o(p + =2 (p = €)= o(p)} (2)
then we can rewrite the equations (1) as

h ~ Sg, (3)
Awith k

S=up' - I. (4)
If V=P - pp', as usual, then VS = - V. Thus

(h - Sg)'V(h ~ Sg) = h'Vh + 2¢'Vh + g'Vg = (h + g)'V(h + g), (5)
and PS = - V, which implies

(h - Sg)'P(h - Sg) = h'Ph + 2g'Vh + g'Vg = (h + g)'V(h + g) + (h'p)°. (6)

Both least squares criteria (5) and (6) are minimized by taking g = -h. It
follows that we can estimate the delta method variance estimate by using
h'Vh. This can be interpreted by first estimating g by finite differences
methods, and by using the estimate of g in the delta method formula.

The jackknife variance estimate is the variance of the jackknife pseudo-
values. The vector of pseudo values f is given by

fk = ¢(p) - hk’ (7)
and thus f'Vf = h'Vh. Thus the jackknife variance estimate can be interpreted

as a two-step estimate of the delta method variance estimate, using finite
differences to approximate derivatives.

Jan de Leeuw
may 13, 1985.



