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1: Problem

Suppose Y is a given n x m matrix, A is a given m x m positive semidefinite
matrix. Keller and Wansbeek study the minimization of

a(X) = tr (X - Y)A(X - Y)',

over all X that satisfy rank(X) <p and (X - Y)AA+ = X - Y. Here p is

a given integer, and AT is the Moore-Penrose inverse of A. The motivation
for this problem is explained by Keller and Wansbeek, it derives from
maximum 1ikelihood estimation in a linear errors-in-variables model.

Keller and Wansbeek use parametric versions of the rank-constraints,
in combination with undetermined multipliers and matrix derivative
calculus. The rank constraints can be formulated either as XB = 0,
with B anm x (m - p) matrix of rank m - p, or as X = GH', with

G an n x p matrix and H an m x p matrix. The two formulations Tead
to two conditional minimization problems, and Keller and Wansbeek
show after a Tot of algebra that the solutions to these two problems
are indeed the same. Nevertheless their treatment of the problem
does not seem to be completely satisfactory. Questions of existence
are not settled clearly, the full-rank constraint on B is more or
less ignored, only necessary conditions for an extreme value are
actually used. The two parametrizations of the rank-constraint on

X Tead to two different and lengthy proofs, which are purely mechanical
and not very illuminating.

In this note we propose a different method to study the same problem,
which does not seem to have the disadvantages of the tools used by
Kelier and Wansbeek.

2: Notation-

Define r = rank(A) and s = rank(Y). The matrix K contains eigenvectors
corresponding with nonzero eigenvalues of A, thus K is m x r, and we
choose K such that K'K = I. The nonzero eigenvalues are collected in
the r x r diagonal matrix A2, they are ordered in such a way that

AK = Kv2, We also use L, which is an orthonormal basis for the null-
space of A, i.e. K'L = 0 and L'L = I, whileL ism x (m - r). Also
define U = YL, t = rank(U), and V = Yki.



-

To define our problem we Tlet

o, = inf {o(X) | X 66},

:S = (X ¢ RT™ | rank(X) < p & XL = U},

and thus o = +e if:j is empty. Also define
’:)t = {X ed| o(X) = o*}.
Our problem is to compute Ty and {3*.

3: Existence

Theorem 1: f& is nonempty if and only if p > t.

X
n r-and

Proof: The general solution to XL = U is X = ZK' + UL', with Z € R
otherwise arbitrary. For any X of this form we have rank(X) = rank(Z | U).
By varying Z we can make rank(X) equal to any value between t and

min(t + r,n). Thus rank(X) < p & XL = U is possible if and only if

p=>t. Q.E.D.
Theorem 2:~j* is nonempty if and only if p 3 t.

Proof: Necessity is obvious from theorem 1. To prove sufficiency we define,
for some arbitrary e > 0,

o (X) = tr (X = Y)(A + ?LL')(X - Y)'.

€ .

Ier,efS then oe(X) = o(X). Thus'f&* also is the set of minimizers of
oE(X) on"j . Moreover YLL' e'l because rank(YLL') = rank(U) = t < p, and
(YLL")L = U. Because oE(YLL') = o(YLL') = tr YAY', the set fﬁ* is also
the set of minimizers of oe(X) onfﬁ (\ {oe(X) < tr YAY'}, which is a
compact neighborheod of Y, showing that {3* is nonempty. Q.E.D.

4: Construction

Define (assuming from now on that p z t)

o ()

%*

ARG
Suppose SRR is an increasing unbounded sequence of positive numbers,
and set o, = o (e, ) and 7§ MM CHP

Theorem 3: a: lim o =0
O Em I Koo

inf {oE(X) | rank(X) < p},
RNXT

X e | rank(X) < p & oe(X) = o (e)}.

*

*.
b: If X, E‘TSk for all k, and X_ is a subsequential limit of
X13X2’---’ then X* € j*.

Proof: It is clear that 9 increases, and that ) < Oy for all k. Thus



ok converges to, say, o,, < G..

*ok *
Define 7, = tr (X, - Y)LL' (X, = Y)'. Thus o) = o(Xk) + eﬁTk $ 0.5 OF
k Kk S % = O Taking the subsequential Timit shows that eﬁTk remains
bounded by O ™ Ty which implies that T, converges to zero, and thus
that X eiﬁ Because o(X*) = Opp € 0, this means that X* € "3*, and
Tox - Q.E

5: Computation

To compute the 1imits we need some extra notation. We write (Z)_ for

a best rank p approximation of the matrix Z in the ordinary least
squares norm. Thus (Z)p minimizes tr (X - Z)(X- Z)' over all X with
rank(X) < p. If rank(Z) < p, then obviously (Z)p = Z, If rank(Z) > p,
then rank((Z)_ ) = p, but (Z)p is not necessarily unique. We compute
(Z)_. by 'truncating' the singular value decomposition of Z, keeping
only the p largest singular values. If the singular values of Z are
ordered as Y1 200 2 een 2 Y and if rank(Z) > p, then (Z)p is unique
if-and only if wp > wp+1. These are all familiar results, which can be
found, for example, in review papers by Corsten (1976) and Rao (1980).
The results can be used directly to compute 0*(6) and fj*(e)

find

m m
o (e) = T w2V | eU)=e2 T (W' + v,
g=p+1 g g=p+1 g €

where we use ¥ _( ) for the ordered singular values, and Aq( ) for the
ordered eigenvalues of a matrix. We continue to assume that p > t, we
also assume that s > p (otherwise the problem has the obvious solution
X = Y). Define the n x (n - t) matrix R= (G|H) which satisfies R'R= 1
and R'U = 0. The partitioning of R is such that in addition H'Y = 0

and H is n x (n - s). Thus G is n x (s - t),

Perturbation theory (Kato, 1966, Baumgartel, 1972) now makes it possible
to describe eigenvalues of UU' + e_ZVV' in somewhat more detail. The

t largest eigenvalues are A»_(UU') + O(e-z), the next s - t eigenvalues
are ¢ % (G'VV'G) + o(s_z),qand the final n - s eigenvalues are zero.

It follows that

s-t
o, = A (G'VW'G).
* q=l§p-t g



The elements of‘fS*(e) are of the form

-1
1 eh ~ 0K
This follows directly for ordinary rank-p matrix approximation theory with
nonsingular weighting matrices (for example Rao, 1980, section 3). We now
need limit theory for eigenvectors or eigenprojections, which is a bit
more complicated than the corresponding theory for eigenvalues. Nevertheless

all the necessary results are readily available (Kato, 1966, chapter 2).

We use the fact that (Z)p =T T'Z, where Tp are eigenvectors corresponding
with the p Targest eigenvalues of ZZ' (observe that Tp may not be unique).
The eigenvectors corresponding with the t largest eigenvalues of.

uu' + E_ZVVl are asymptoticaily the eigenvectors corresponding with the
nonzero eigenva]ue§ of UU'.The remaining p - t eigenvectors are of the
form GM, where M is an (s - t) x (p - t) matrix of eigenvectors
corresponding with the p - t largest eigenvalues of G'VV'G. Again we have
to be a bit careful here, because M may not be uniquely defined if there
are multiple eigenvalues. In this case the p - t eigenvectors and their
corresponding projection may not converge, and we use the fact that the
iimit of any convergent subsequence is of the form GM, For such a
subsequence

_1)’

(v | ), = (UU* + aM'6) (v | V) + ofe
and thus

X = (UUF + GMM'G)Y

is in 7§,. Because UU" = I - G&' - HH' it also follows that
X = (I - GNN'G')Y,

where N is an (s - t) x (s - p) matrix of eigenvectors corresponding with
the s - p smallest eigenvalues of G'VV'G,

6 Dual derivation

In stead of using (Z)p = TpTéZ, with Tp the eigenvectors corresponding with
the p largest eigenvalues of ZZ', we can also use (Z)p = ZSpS&, with Sp
eigenvectors corresponding with the p largest eigenvalues of Z'Z. If we

apply this we find

EE' 0, 1, .0 FFv (U -1

1 1
0, =V T ppr) + 2 (e o0 ) *ole

This is considerably more complicated as the corresponding expression in

)t

the previous section, which is due to the row-column asymmetry of our

problem. In the formula E is an r x (p - t) matrix of eigenvectors



corresponding with the p - t largest eigenvalues of V'GG'V, F is an.

rx (r-(p-t)) matrix of eigenvectors corresponding with the r - (p - t)
smallest eigenvalues, E'F = 0, and D is "an (m - r) x t matrix of
eigenvectors corresponding with the nonzero eigenvalues of U'U (i.e.

DD' = U+U). The same comments about multiple eigenvalues apply as in

the previous section. In the previous section we assumed that s > p

to avoid trivial complications, in this section we assume for the same
reason that p - t < r (again, if p -t z r, then X = Y is a solution,.
because s s r + t).

It follows that

1 1

X = Y(I - KR\FF'AT K + LUTVFF' Tk,

is in fj*. In this connection it is of some interest to see that Uty = 0
if Y is of full column rank, in which case the expression for X
simplifies to

X = Y(I - KaFF'a™1

K')l
Both in the general and in the special case the matrix with which we
postmultiply Y to get X is idempotent, but not necessarily symmetric.

It is symmetric ifa =1, i.e. if A is a projector.
We also remark that V'GG'V = V'(I - HH' - Uut)y = v'(I - W) = o.
Thus if Y is of full column rank, then V'GG'V = V'V. In general

it is consequently not necessary to compute G if we apply the method
of this section, if s = m it is also not necessary to compute U.

7 Relationship with simultaneous diagonalization

We use the results of De Leeuw (1981) here. Define W = (N1 | Wy), with
of order m x r and W, of order m x (m - r), by

1
W= (- LUTV)(E | F),
W2 = LQ,
where Q is a complete set of eigenvectors of U'U. Then
ipt _
WA w1 =1,
inty
WZA w2 = 0,
wlv le = Q,
WZY'YW2 = =,
Iyt -_
wlv YW, = 0,
sz'le =0,



where @ are the eigenvalues of V'G'GV and = are the eigenvalues of U'U,
both collected in diagonal matrices. Thus W diagonalizes both A* and Y'Y,
moreover W is nonsingular (it is not necessarily the unique matrix with
these properties, cf De Leeuw, 1981).

Using the formula for X derived in the previous section we find

XWy = (I - UUH)V(I - FF')(E | F) = (I - WHV(E | 0),

1
XH, = uq.

Thus XW has (r = (p - t)) + ((m-1r) = t) =m~- p columns equal to zero,
and possibly more if (I - UU+)VE has zero columns. More precisely,
assuming that p - t < r as usual, the number of zero columns in XW is
(m=p)+ ((p-1t) - rank(GV)) =m - s,

Because

[RVA | _ Q 0
Wy XKWy = (5 o)
HIX Xw2 = 0,

3 1 —_

tyt = =
WZX sz = =,

with @ the p - t largest eigenvalues of V'G'GV, it follows that W also
diagonalizes X'X.

Thus the results of section 6 make it possible to give the principal-
relations representation of X in the sense of Keller and Wansbeek
directly. Not surprisingly the results of section 5 can be used to

find a principal components representation. We write ut = Jd', where

J is the n x t matrix of eigenvectors corresponding with nonzero eigen-
values of UU'. Thus

i J'y
X = (J l GM)(MIGlY)“
In this decomposition of X the matrix on the Teft is orthonormal, the
matrix on the right is A-orthogonal.

8 Further results

Examples, rate of convergence results, and some generalizations will be
published in a later version of this paper.
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