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Introduction

It has already been pointed out by many authors that multivariate analysis is
the natural tool to analyze ecological data structures. Gauch summarizes the reasons
for this choice in a clear and concise way. "Community ecology concerns
assemblages of plants and animals living together and the environmental and
historical factors with which they interact. ... Community data are multivariate
because each sample site is described by the abundances of a number of species,
because numerous environmental factors affect communities, and so on. ... The
application of multivariate analysis to community ecology is natural, routine, and
fruitful." (Gauch, 1982, p. 1). Legendre and Legendre discuss the ecological
hyperspace implicit in Hutchinson's concept of a fundamental niche. "Ecological
data sets are for the most part multidimensional: the ecologist samples along a
number of axes which, depending on the case, are more or less independent, with
the purpose of finding a structure and interpreting it." (Legendre and Legendre,
1983, p. 3).

A number of possible ecological applications of multivariate techniqueé are
mentioned in the following quotation from the recent book by Gittins (1985).
"Ecology deals with relationships between plants and animals and between them and
the places where they live. Consequently, many questions of interest to ecologists
call for the investigation of relationships between variables of two distinct but
associated kinds. Such relationships may involve those, for example, between the
plant and animal constituents of a biotic community. They might also involve, as in
plant ecology, connections between plant communities and their component species,
on the one hand, and characteristics of their physical environment on the other. As
another example, comparative relationships among a number of affiliated species or
populations with respect to a particular treatment regime in a designed experiment
might be studied. In more general terms, the question which arises calls for the
exploration of relationships between any two or more sets of variables of ecological
interest." (l.c., page 1).

It is of some importance to observe that Gittins gives a somewhat limited
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description of the possibilities of multivariate analysis here. The reason being, of
course, that his book is about canonical analysis, a rather specific class of
multivariate techniques. We can study relationships between sets of variables, as in
the various form of canonical analysis, but also relationships within a single set of
variables, as in the various forms of clustering and component analysis. In
classification and ordination, for example, we usually deal with a single set of
variables. Each species in the study defines a variable, assigning abundance
numbers to a collection of sites. It may seem natural to relate sets of variables if we
want to study abundance or behaviour of species in relation to the environment, but
it would be more appropriate to analyze the within-structure of a single set if we
describe the structure of a single community or location. And if we want to study the
interaction between members of a community, under various circumstances, it may
be even more appropriate to use techniques derived from multidimensional scaling,
for which the basic data are square interaction or association matrices and the basic
units are pairs of individuals.

Forms and problems of multivariate analysis

As indicated in the introduction, multivariate analysis studies the
relationships between a number of variables which are defined for each of a number
of objects. We shall formalize this below, but the intuitive meaning is probably
clear. The objects can be samples or sites, and the variables can be species with
varying degree of abundance in each of the sites or they can be physical
characteristics of the sites. Or the objects can be pairs of individuals of a certain
species, and the variables can be measures of interaction between the pairs. In this
section we argue that multivariate analysis consists of a very large variety of models
and techniques, in fact a far greater variety than one could ever hope to discuss in a
single paper or book. Nevertheless some classes of techniques can be distinguished,
and we shall briefly discuss them in order to delineate the class we shall be talking
about in the sequel. A more extensive treatment of the same classificatory problem
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is in Gifi (1981), and in Gnanadesikan and Kettenring (1984).

In mathematical statistics the notion of a model plays a very prominent part.
In fact the model is usually the starting point of a statistical analysis. The assumption
is that the data are realizations of random variables, whose distribution, except
possibly for some unknown constants, is described by the model. In multivariate
analysis by far the most prominent model is the multivariate normal distribution
(Anderson, 1958, Muirhead, 1982). The multivariate measurements are assumed to
be realizations of independent random vectors, each with the same multivariate
normal distribution. Statistical techniques estimate unknown parameters and test
hypotheses on the basis of this multinormal model, usually employing the likelihood
function. The multivariate normal distribution has numerous technical and
interpretational advantages, which are mostly due to its intimate connections with
Euclidean geometry.

In recent years another model has gained some prominence, mainly in
discrete multivariate analysis. This is the multinomial model, usually presented in the
form of loglinear analysis (Bishop, Fienberg, and Holland, 1975, Haberman, 1979,
also compare Legendre and Legendre, 1983, chapter 4). Again the basic assumption
is that we are dealing with realizations of independent and identically distributed
random vectors, but in multinomial analysis no additional parametric assumptions
are made. Because the data vectors are discrete, and each variable assumes only a
finite number of values, it is possible to use such a nonparametric approach. The
main difference between the multinormal and the multinomial model is that in the
multinormal case we only have to model the first order interactions between the
variables. Because the means and covariances are a complete set of sufficient
statistics, they contain all information in the data, and we can ignore all higher order
moments. In the multinomial model all higher order interactions have to be taken into
account. This often leads to serious interpretational problems, and it makes analysis
with a moderate number of variables already quite impractical. It is consequently not
surprising that much effort in the recent statistical literature is expended on the
development of models which combine features of multinomial and multinormal
modelling (Agresti, 1983). In a sense the techniques we shall present below can also
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be interpreted as such combinations. '

In another sense, however, there are important differences between the
classical statistical modelling techniques and our multivariate data analysis methods.
As we have seen above, the notion of a probabilistic model is basic in classical
statistics. From the model we derive the technique, and the results then tell us if the
model is appropriate or not. In multivariate data analysis we work differently. We do
not make explicit assumptions about the process that has generated the data, because
very often it is not at all clear how realistic such assumptions are, and in many cases
it is even clear that the usual assumptions are not satisfied at all. Multivariate
normality and complete independence are quite rare in practice. Thus in stead of
starting with a model and trying to fit in the data, we start with the data and we try to
find a structure or model that can describe or summarize the data. These two
approaches correspond, of course, with the age-old distinction between induction
and deduction, between empiricism and rationalism. In recent discussions the
concepts of exploration and confirmation, and of description and inference, are
often contrasted. Data analysts generally feel that the models of classical statistics are
much too strong and too unrealistic to give good descriptions of the data. And, of
course, mathematical statisticians feel that the techniques of data analysis very often
lead to unstable results, that are difficult to integrate with existing prior knowledge.
It will not come as a surprise, that we think that both approaches have their value. If
there is strong and reliable prior knowledge, then it must be incorporated in the data
analysis, because it will make the results more stable and more easy to interprete.
But if this prior knowledge is lacking, it must not be invented just for the purpose of
being able to use standard statistical methodology. And, certainly, we must not make
assumptions which we know to be not even approximately true. Finally there are
many situations in which good statistical procedures can in principle be applied, on
the basis of firm prior knowledge, but in which there simply are not enough data to
make practical application possible. In such situations a data analytical compromise
is needed too.

There are some interesting problems in the application of various
multivariate analysis techniques to ecology. They have been admirably reviewed by
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Noy-Meir and Whittaker (1978). We mention them briefly here, but we shall also
encounter them again in our more formal development below. The distinction
between R and Q techniques has been discussed extensively by psychometricians
such as Cattell and Stephenson. It is based on the fact that we think as the species as
ordening the samples, but also as the samples as ordening the species. In a given
data structure we have to decide what the variables are, and what the units are on
which the variables are defined. Sometimes the choice is clear and unambiguous,
sometimes the situation is more complicated. Compare Heiser (1986) for additional
discussion of this problem. As a second problem Noy-Meir and Whittaker mention
data transformation and the choice of similarity measures. We could generalize this
somewhat to the problem of data definition and expression. This has as special
cases the choice of centering and standarization, but also taking logarithms or using
any of the other reexpression techniques discussed by Legendre and Legendre
(1983, p. 11-18). The nonlinear multivariate techniques explained in our paper take
a radical point of view, by assuming that the expression of the variable in the data
matrix is essentially conventional, merely a coding. Thus the reexpression problem
does not have to be solved before the technique is applied, but it is an important part
of our multivariate techniques to find appropriate reexpressions. The third problem
is the distinction between the discrete and the continuous, or between ordination

and classification. This has also been discussed extensively in the psychometric
multidimensional scaling literature. Compare Carroll and Arabie (1980), De Leeuw
and Heiser (1982). In this paper we take the point of view that continuous
representation, if applied carefully, will often show discontinuities in the data.
Assuming discontinuity right away, and applying a classification or cluster method,
in many cases imposes too much a priori structure. A final problem mentioned by
Noy-Meir and Whittaker is that of non-linearity and axes interpretation. This is
perhaps especially relevant in connection with the component analysis or
correspondence analysis of abundance matrices, in which we invariably find the
horseshoe or Guttman effect (Heiser, 1986). Again the nonlinear multivariate
analysis techniques discussed below take a radical stand in this problem.
Nonlinearities due to the coding of the variables are avoided by finding optimal
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transformations, and nonlinearities that occur in the representation can be eliminated
by imposing restrictions on the representation, somewhat as in detrended
correspondence analysis (Hill and Gauch, 1980).

Noy-Meir and Whittaker come to the following conclusion in their useful
review paper. "After twenty-five years of development of continuous multivariate
techniques in ecology, some of the early optimistic promises, as well as some of the
sceptical criticisms, seem to have been overstated " (Noy-Meir and Whittaker, 1978,
p. 329). The nonlinear multivariate data analysis techniques developed in this paper
may contribute additional useful procedures and possibilities. But they must be seen
in the proper perspective. If there is strong prior knowledge, either of a structural or
of a probabilistic nature, then it must be incorporated in the analysis. Sometimes our
techniques have options which make it possible to build in suitable restrictions, but
if the information is very specific, then one must switch to a specific technique. If it
is known that species distributions are Gaussian, then one should use Gaussian
ordination, and not correspondence analysis. Our techniques are most useful in the
areas in which there is not much prior knowledge, or in which the ratio of amount of
data to amount of theory is large.

Multivariables

We start our formal developments in this paper by providing some
definitions. In multivariate analysis we always study a number of variables, defined
on a set of objects. More precisely, a variable is a function . Legendre and
Legendre use a slightly different terminology. "Any ecological study, classical as
well as numerical, is based on descriptors. In this text the term descriptor will be
used for the attributes, variables, or characters (also called items in the social
sciences) that describe or compare the objects of the study. The objects that the
ecologists compare are the samples, locations, quadrats, observations, sampling
units or subjects which are defined a priori by the sampling desing, before making
the observations." (Legendre and Legendre, 1983, p. 8). For variables we use the
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familiar notation ¢ : Q -> T Here Q is the domain of the variable, consisting of the
objects, and T is its target, containing the possible values of the variable. Elements
of the target are also called the categories of a variable. A variable ¢ associates with
each we Q a category ¢(w) e I'. In practical applications and in actual data analysis the
domain Q will be a finite set {,,...,,}. For theoretical purposes the domain can be
infinite. If Q is a probability space, for instance, and ¢ is measurable, then our
variable is a random variable. Targets can be finite or infinite as well. In many cases
the target is the reals or the integers, i.e. T =R = J-oo,4oo[, or ' =N = {0,1,2,....}.
But it is also possible that I = {short grass, short grass /thicket, tall grass with
thicket} or I' = {close, moderate, distant}.

Table 1.5 from Legendre and Legendre (1983, p. 9), that we copy here,

shows the types of targets we can expect to encounter. Most of the terminology will
probably be clear, but we refer to Legendre and Legendre (1983, p. 10-11) for

further explanation.
Descriptor type Examples
Binary (two states, presence-absence) species present or absent

Multi-state (many states)

| nonordered (qualitative, nominal, attributes) geological group

| ordered

| |  semi-quantitative (rank-ordered, ordinal) importance or abundance scores
| | quantitative (measurement)

| | | discontinuous (meristic, discrete) equidistant abundance classes

| [ | continuous temperature, length

Most of the techniques of multivariate analysis have been developed for
continuous variables such as temperature and length. As shown by Gittins (1985),
for example, nonnumerical multi-state variables can be incorporated in some
techniques. In analysis of variance, for example, the design matrices consist of
dummies, which are codings of nonordered multi-state variables. In discriminant
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analysis a similar dummy is used to code class membership. It remains true,
however, that the models of classical continuous multivariate analysis are entirely in
terms of multinormal variables. Dummies are used only as coding devices, to
indicate that objects are sampled from different populations. In nonlinear multivariate
analysis as discussed in this paper we use dummies and coding in a much more
constructive way. A good starting point is the following quotation. "Coding is a
technique by which raw data can be transformed into other values that can then be
used in the analysis. All types of descriptors can be recoded but non-numerical
descriptors must be coded before they can be analyzed numerically.” (Legendre and
Legendre, 1983, p. 10). The coding problem is thus related to the reexpression
problem discussed above. If variables are numerical we often use transformation, if
they are non-numerical we use quantification , but in all cases the coding we use is a
real-valued function on the target set of the variable. Real-valued codings of
non-numerical variables are often called scalings. Coding in many cases is dictated
by conventional considerations. Thus {close,moderate,distant} is often coded as
{1,2,3}, but in nonlinear multivariate analysis we look specifically for codings (or
transformations, or quantifications, or scalings) which are optimal in a well-defined
sense.

In multivariate analysis we analyze several variables at the same time. This
requires some additional terminology. A multivariable is a set of variables with a

common domain. We use the notation ® = {¢, | te T}, where ¢, : Q -> T, and where
T is the index set of the multivariable. Thus the variables in ® have the common
domain Q, but they have possibly different targets I',. Multivariate analysis studies

the structure of multivariables.

A simple example is perhaps useful here. We have taken some classical data
of Mayr (1932). The domain of the five variables in this example consists of
twelve races of the bird Pachycephala Pectoralis. Specifically Q = {dahli, chlorura,
vitiensis, bougainvillei, torquata, melanota, melanoptera, sanfordi, ornata, bella,

optata, graeffii}. Variable 1 is called THROAT and maps Q into I'y =
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{yellow,white}. Variable 2 is called BREAST BAND and maps Q into I'y =
{present,absent}. COLOR OF BACK maps Q into I'y = {olive,black }, FOREHEAD
maps into I’y = {yellow,black}. Variable 5, finally, is called WING, and maps the

races into I's = {colored,black}. All variables are binary. The multivariable is defined

by the following table, in which we have numbered races and variables, and in
which we have used simple abbreviations for the values of the variables.

12 3 4 5§
01 yjWPOBZC
02|wW P OBZC
03|][W P OB C
04l]Y PO B C
0s|y PO BC
06lY PB B B
07]Y P OB B
08Y A OB C
O|WPBBZC
10lY PO Y C Table 1:
11]Y P O Y C :
2y A0 Y ¢ bird data from Mayr

Thus, for instance, ¢5(bella) = olive and ¢,(sanfordi) = absent.

The example can also be used to illustrate interactive coding of variables.
COLOR OF BACK and FOREHEAD are binary variables with targets, respectively,
{olive,black} and {yellow,black}. Using them we can create the interactive variable
COLOR OF BACK x FOREHEAD with target {(olive,yellow), (olive,black),

(black,yellow), (black,black)}. In general if we have m variables with Kiseokm
categories, i.e. a total of kq + ... + kp, categories, then we can create an interactive

variable with k{ x ... x k, categories. We can also make interactive codings for all
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pairs of variables, this gives us a total of C(k{,2) + ... + C(k,,2) categories. Here

C(k,r) is used for binomial coefficients. Thus there are many possibilities of coding
a given set of variables.

The example above is quite straightforward, but it is not representative for a
typical ecological data set. More representative examples are given, for example, in
appendix A2 of Gittins (1985). The limestone grassland community example,
discussed by Gittins in his chapter 7, defines eight estimates of species abundance
and six soil variables on a random sample of 45 stands, each of 10 x 10 meter .
Each stand was divided into 5000 units of 10 x 20 cm, and species abundance is
defined as the percentage of these units in which the species occurred. It is clear that
the most natural object in this experiment is the 10 x 20 cm unit, i.e. there are 45 x
5000 = 225000 such units. The eight species define binary variables on these units,
with target {present,absent}. There is a variable called STAND, which takes 45
different values, and there are six soil variables, which have the property that units
within the same stand get the same soil value on all six of them. We can also follow
Gittins and use the stand as the fundamental unit. This process is called aggregation,
because it involves aggregating the 5000 original units in a single stand. This
aggregation process makes it possible to treat the abundancies as numerical
variables, taking values between 0% and 100%. The example shows that the choice
of unit is sometimes debatable.

The next example is also representative, but a bit more problematical. It is
taken from Legendre and Legendre (1983, p. 191). Five ponds are characterized by
the abundances of different species of zooplankton, given on a scale of relative
abundance varying from O to 5. It is clear that this matrix is also based on
aggregation, of the same sort as in the Gittins example. But we can also use it to
illustrate transposition, or the choice between Q and R. In this example we can take
the species as units, and the ponds as variables. Each pond maps the eights species
into the target {0,1,2,3,4,5}. It is also possible to interpret the ponds as units and
the species as variables, again with the same target {0,1,2,3,4,5}. We can also treat
the example as bivariate. The grand-total of the data matrix is 52. These 52
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‘abundance credits' are used as the units, and the two variables are SPECIES and
PONDS. Thus there are three credits with species-value 1 and pond-value 212, and
four credits with species-value 5 and pond-value 214, and so on. The data matrix is,
in this interpretation, the cross table of the two variables. And finally we can use the
40 ponds and species combinations as units, and interpret our results as
measurements on a variable that maps these 40 combinations into {0,1,2,3,4,5].
Two other variables can be defined on these units. The first one is POND, with five
variables in its target, and the second one is SPECIES, with eight values. In this last
interpretation there are consequently 40 units, and three variables. There are no clear
a priori reasons for preferring one interpretation over the other. The choice must be
made by the investigator, in combination with the choice of the data analysis

technique.
) Ponds
Species
212 214 233 431 432
1 3 3 0 0 0
2 0 0 2 2 0
3 0 2 3 0 2
4 0 0 4 3 3
5 4 4 0 0 0
6 0 2 0 3 3 Table 2:
zooplankton data
7 0 0 0 1 2 of Legendre
8 3 3 0 0 0

Functions of Correlation Matrices

In this paper we shall mainly discuss multivariate techniques which compute
statistics depending on the second order moments and product moments of the
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variables, more specifically on their correlation coefficients. This implies,
obviously, that the higher order moments of the distributions of the variables are
irrelevant for the techniques we discuss. Thus the loglinear methods for frequency
tables, for example, are not covered by the developments in this paper. On the other
hand our techniques also do not depend on first order moments, i.e. on the means of
the variables. This means that we can suppose, without loss of generality, that all
variables we deal with are in deviations from the mean. We are not interested in the
structure of the means, although our development of discriminant analysis and
analysis of variance will show that in some cases means can be reintroduced by the
use of dummy variables. Because our methods depend only on the correlation
coefficients, this moreover means that they are scale-free. The unit of the variables
and consequently their variances are irrelevant. All variables can be assumed to be
standardized to unit variance. It is one of the purposes of this paper to show that this
somewhat limited class of multivariate techniques still has many interesting special
cases.

Now this description of the class of techniques we are interested in is
somewhat problematical. We can compute correlations only between variables which
are numerical, so either we must limit our attention to measured variables, or we
must compute correlations between non-numerical variables which are coded
numerically. And if we use coding of non-numerical variables, and then compute
correlations, then it is clear that the correlations will depend on the particular coding
or scaling that we have chosen. And, in fact, something similar is also true for
measured variables. In stead of using abundance or yield, for instance, we could
also use log-abundance or log-yield, which would give different correlations. We
introduce some notation to describe this scaling or transformation of the variables.

Remember that we started with a multivariable @ = {¢, 1 te T}, where ¢;: Q
-> T A scaling (or quantification, or transformation) of the targets of this
multivariable is a system ¥ = {y, | te T}, where y, : I',-> R. The values of a scaling

are often called the category quantifications of a variable (or the transformed
values). A scaling of the targets induces a quantification A of the multivariable by
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the simple rule A = {A; | te T}, where A, is the composite y; 0 ¢, : Q -> R. This is

illustrated in Figure 1. Write R(A) for the correlation matrix induced by the scaling of
the variables.

. variable
Q » T domain — target
uantified
A v q vanuzﬁ)\ %ﬁﬁcaﬁon
R reals
Figure 1:
Quantification diagram

Time to switch to an example. In the first three columns of Table 3 the
zooplankton data of Legendre and Legendre are coded as 40 observations on the
three variables SPECIES, POND, and ABUNDANCE. We use integer coding, or
category numbers. Observe that SPECIES and POND are uncorrelated, because the
design is balanced. Only the correlations of SPECIES and POND with
ABUNDANCE depend on the scaling of the variables we have chosen. With integer
coding the correlation between SPECIES and ABUNDANCE is -.01, and the
correlation between POND and ABUNDANCE is -.06. Now suppose that we use a
form of scaling which is sometimes called criterion scaling. This means that we use
integer coding for ABUNDANCE, but both for SPECIES and for POND we choose
the average ABUNDANCE values of a species or pond as the quantifications. The
SPECIES - ABUNDANCE correlation increases to .29, and the POND -
ABUNDANCE correlation to .16. The proportion of variance of ABUNDANCE
‘explained’ by SPECIES and POND is .1082.

We shall discuss other criteria and other solutions below, but first we have
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SPECIES

10000000
10000000
10000000
10000000
10000000
01000000
01000000
01000000
01000000
01000000
00100000
00100000
00100000
00100000
00100000
00010000
00010000
00010000
00010000
00010000
00001000
00001000
00001000
00001000
00001000
00000100
00000100
00000100
00000100
00000100
00000010
00000010
00000010
00000010
00000010
00000001
00000001
00000001
00000001
00000001

WOOWOWRNNNNNNIAAOAANNUNUNUNNEDRRRR,LWWWWWRRNDNDNDN -

Table 3: Category numbers and indicators for
Legendre zooplankton data

POND

10000
01000
00100
00010
00001
10000
01000
00100
00010
00001
10000
01000
00100
00010
00001
10000
01000
00100
00010
00001
10000
01000
00100
00010
00001
10000
01000
00100
00010
00001
10000
01000
00100
00010
00001
10000
01000
00100
00010
00001
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INDICATOR CODINGS

ABUNDANCE

000100
000100
100000
100000
100000
100000
100000
001000
001000
100000
100000
001000
000100
100000
001000
160000
100000
000010
000100
000100
000010
000010
100000
100000
100000
100000
001000
100000
000100
000100
100000
1060000
100000
010000
001000
000100
000100
100000
100000
100000
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to develop some notation and terminology which make it possible to discuss the
optimal scaling problem in general. The general approach and the notational system
are due, in some specific cases, to Fisher (1941) and to Guttman (1941). A more
comprehensive approach to nonlinear multivariate analysis along these lines
originated with Guttman (1959) and De Leeuw (1973). The specific notational
system and terminology we use in this paper are due to Gifi (1981), also compare
De Leeuw (1984a).

Indicator matrices and quantification

Let us look at the second part of Table 3. This contains the same
information as the first three columns, but coded differently. In the terminology of
De Leeuw (1973) we call the codings of the variables indicator matrices, but in other
contexts they are also called dummies. One interpretation is that SPECIES, for
instance, is now coded as a set of eight different binary variables. The total number
of variables, in this interpretation, is now equal to 19, which is the total number of
categories of SPECIES, POND, and ABUNDANCE. The important property of
indicator matrices, for our purposes, is that each possible quantification of the
variables is a linear combination of the columns of the indicator matrix of that
variable. Or, if there are n objects, we can say that the columns of the indicator
matrix form a basis for the subspace of RD defined by the quantifications of the
variable. The columns span the space of possible quantifications.

Suppose G; is the indicator matrix of variable t. Assume that there are n
objects and that variable t has k; categories. Then G; has n rows and k; columns.
The matrix Dy =3¢ G{'G; is diagonal, i.e. the columns of G; are orthogonal (the
categories of a variable are exclusive). And the rows of G; sum to unity (the

categories are exhaustive). A quantification y; of the categories maps the k-element
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set Iy into the reals, and is thus a kt-element vector. Write it as Y- Then As the
quantified variable, is given by the product q, = G,y;. Given vectors y, of category

quantifications we can construct quantified variables, and given quantified variables
we can construct the correlation matrix R(A). We limit our attention to normalized
quantifications. If u is used for a vector with all elements equal to +1, the number of

elements of u depending on the context, then we want u'q; = u'Gyy; = uDyy, =0
and q;'q; = y¢Dyy; = n. If s and t are two variables, with corresponding indicators
and normalized quantifications, then the correlation between the quantified variables
is given by rg; = n1 ¥s CstYp where Cgi =q¢ G4'G;, is the cross-table of variables s
and t. Observe that D, = C;;. Our formulation of the quantification problem in terms
of vectors and matrices shows that the correlations rg, are functions of the bivariate
frequencies, collected in the cross-tables Cg;, and the category quantifications y;.
For a given problem, i.e. a given coding of a fixed data set, the Cg, are constant and
known, but varying the y, will give varying correlation coefficients. The comparison

of integer scaling and criterion scaling in the previous section was a first example of
this.

Some common criteria for optimal scaling

We now make a next step. The correlations vary with the choice of the
quantifications, and consequently all statistics depending on the correlations will also
vary. Suppose x(R(A)) is such a (real-valued) statistic, interpreted as a function of
the'scalings. We are interested in the variation of this statistic, and in many cases in
the largest and/or smallest possible value, under choice of quantifications. It is
possible, for instance, to look for the quantifications of the variables which
maximize or minimize a specific correlation. Or, if we have a number of predictors
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and a single variable which must be predicted, we can choose scalings for optimal
prediction, i.e. with maximum multiple correlation coefficient. If the purpose of the
multivariate technique is ordination or some other form of dimension reduction, then
we can choose quantifications in such a way that a maximum amount of dimension
reduction is possible. In a principal components context this could mean that we
maximize the largest eigenvalue, or the sum of the p largest eigenvalues, of the
correlation matrix R(A). In fact we can look through the books on linear multivariate
analysis and find many other criteria that are used to evaluate results of multivariate
techniques. There are canonical correlations, likelihood ratio criteria in terms of
determinants, largest root criteria, variance ratio's, and so on. For each of these
criteria we can study their variation under choice of quantifications, and we can look
for the quantifications that make them as large (or as small) as possible.

Before we give some examples, we briefly discuss the mathematical
structure of such optimal scaling problems. If we restrict ourselves to the case of n
units of observation, coded with indicator matrices, then the stationary equations for

an extreme value of criterion x over normalized quantifications are

Lz mstCot¥y = HsDgYss
where =g, = di/org,. These stationary equations suggest the algorithm

For s=1 to m:

Al: compute gg = X, nGyyy,
A2: compute yg = Ds'le'qS,

A3: compute y by normalizing yg,

next s.

Observe that the algorithm can be used for any criterion x. The criterion influences
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the algorithm only through the form of the partial derivatives m,. It is not guaranteed

that it works, i.e. converges, for all criteria. A detailed mathematical analysis is
given by De Leeuw (1986), who shows that the algorithm does indeed work for
some of the more usual criteria used in nonlinear multivariate analysis, such as the
ones we have mentioned above.

Let us now look at an example. If we want to apply optimal scaling to the
example of Mayr, in Table 1, then we get into trouble. Because all variables are
binary, the possible scalings are completely determined by the normalization
conditions. For binary variables, there is only one possible scaling, and in that sense
they are are the same as numerical variables. We could create variables with more
than two categories by using interactive coding, but the example is so small and
delicate that this would probably not be worthwhile,

We thus apply the algorithm, with various different criteria, to the
zooplankton example. The results are collected in Table 4. Row A contains the
criterion scaling technique mentioned in the previous section. We use integer scaling
for ABUNDANCE, and scale POND and SPECIES by maximizing the sum of the
correlations between ABUNDANCE and POND and SPECIES. The quantifications
are given in Table 4, for the correlations we find r(S,A) = .29 and r(P,A) = .16. In
column B we maximize the correlation r(S,A) by scaling both SPECIES and
ABUNDANCE. Of course this gives no quantification for POND. The optimal
correlation is r(S,A) = .59. In column C the same is done for r(P,A), which can be
increased to .36. Column D is more interesting. It optimizes r(S,A) + r(P,A) over all
three quantifications. This gives r(S,A) = .58 and r(P,A) = .33. In this solution 44%
of the variance in (scaled) ABUNDANCE is 'explained’ by (scaled) SPECIES and
POND.

We shall make no attempt to give an ecological interpretation of the scalings
found by the techniques. The example is meant only for illustrative purposes. It
seems, by comparing columns B, C, and D, that the optimal transformations are not
very stable over choice of criterion, which is perhaps not surprising in such a small
example. The optimal correlations are much more stable. So is the fact that the
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ANALYSIS A B C D E
SPECIES -0.24 -0.20 +0.13 +1.24
-1.18 -1.00 -0.71 -1.06
+0.24 -0.90 -0.72 -0.45
+1.65 +1.12 +1.01 -1.02
+0.71 +1.84 +191 +1.24
+0.71 -0.30 -0.29 -0.52
-1.65 -1.16 -1.46 -0.98
+0.24 +0.20 +0.14 +1.24
POND -0.22 +0.70 +1.22 +1.38
+1.94 +0.54 +0.03 +0.83
-0.75 +0.74 +0.75 -0.94
-0.75 -191 -1.54 -0.96
-0.21 -0.07 -070 -0.84
ABUNDANCE -0.88 +0.01 +0.12 +0.09

-020 -197 -537 -3.34
+0.48 -1.49 -0.11 -1.16
+1.16 +0.29 -0.23 +0.07
+1.84 +2.71 +1.85 +2.62

Table 4: Various optimal scalings for the zooplankton data
A criterion scaling: A integer, maximize r(S,A) + r(P,A).
B: maximize r(S,A).
C: maximize r(P,A).
D: maximize r(S,A) + r(P,A).
E: abundance credits solution
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categories of ABUNDANCE are scaled in the correct order, except for the zero
category which moves to the middle of the abundance scale.

Column E in Table 4 is quite different from the others. This is because it
interprets the data as a single bivariate distribution, with 52 'abundance credits’ as
the units. If we now scale SPECIES and POND optimally, maximizing the
correlation in the bivariate distribution, then we find the quantifications in column E,
and the optimal correlation equal to .89. Again we give no interpretation, but we
point out that the solution in column E can be used to reorder the rows and columns
of Table 2 by using the order of the optimal quantifications. In this reordered version
of the table the elements are nicely grouped along the diagonal. For more
information about such optimal ordering aspects of nonlinear multivariate analysis
techniques we refer to Heiser (1986).

In the book by Gifi (1981) special attention is paid to a particular class of
criteria, that could be called generalized canonical analysis criteria. Also compare
Van der Burg, De Leeuw, and Verdegaal (1984, 1986) for an extensive analysis of
these criteria, plus a description of alternating least squares methods for optimizing
them. In generalized canonical analysis the variables are partitioned into sets of
variables. In ordinary canonical correlation analysis (Gittins, 1985) there are only
two sets. In some of the special cases of ordinary canonical analysis, such as
multiple regression analysis and discriminant analysis, the second set contains only a
single variable. In principal component analysis the number of sets is equal to the
number of variables, i.e. each set contains a single variable. The partitioning of the
variables into sets induces a partitioning of the dispersion matrix of the variables into
dispersion matrices within sets and dispersion matrices between sets . Suppose S is
the dispersion matrix of all variables, and T is the direct sum of the within-set
dispersions, i.e. T is a block-matrix with on the diagonal the within-set dispersions,
and outside the diagonal blocks of zeroes. In ordinary canonical correlation analysis
T consists of two blocks along the diagonal that are nonzero, and two zero blocks
outside the diagonal. In principal component analysis T is the diagonal matrix of the
variances of the variables. Van der Burg et al. (1985) define the generalized
canonical correlations as the eigenvalues of m'lT'IS, where m is the number of
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sets. In principal component analysis the generalized canonical correlations are the
eigenvalues of the correlation matrix, in ordinary canonical analysis they are linearly
related to the usual canonical correlation coefficients. Gifi (1981) concentrates on
techniques that maximize the sum of the p largest generalized canonical correlation
coefficients. These are, of course, functions of the correlation coefficients between
the variables. This means that we are dealing with a special case of the previous
set-up. But this special case is exceedingly important, because the usual linear
multivariate analysis techniques are all forms of generalized canonical analysis.

Measurement level

In the examples we have discussed so far only two possible scalings of the
variables were mentioned. Either the quantification of the categories is known,
which is the case for measured or numerical variables, or the quantification is
completely unknown, and must be found by optimizing the value of the criterion.
Binary variables are special, because the quantification is unknown, but irrelevant.
The two cases ‘completely known' and ‘completely unknown' are too extreme in
many applications. We may be reasonably sure, for example, that the transformation
we are looking for is monotonic with the original ordering of the target, which must
be an ordered set in this case. Or we may decide that we are not really interested in
nonmonotonic transformations, because they would involve a shift of meaning in the
interpretation of the variable. If we predict optimally transformed yield, for instance,
and the optimal transformation has a parabolic form, then we could say that we do
not predict 'yield' but 'departure from average yield'. In such cases it may make
sense to restrict the transformation to be increasing. The zooplankton example has
shown that often monotonicities in the data appear even when we do not explicitly
impose monotonicy restrictions.

It is one of the major advantages of our algorithm that it generalizes very
easily to optimal scaling with ordinal or monotonic restrictions. It suffices to insert a
monotone regression operator MR(.) in step A2. Thus
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For s=1 tom:
Al: compute qg = X, n(Gyyy,
A2: compute yg = MR(DS'IGS'qS),

A3: compute yg by normalizing yj,

next s.

We do not explain monotone regression here, but we refer to Kruskal (1964) or Gifi
(1981) for details. The basic property we need is that monotone regression does
indeed give monotone quantifications, and that it gives the optimum from the set of
all such quantifications in each stage.

By this modification of the algorithm we can now analyze at least three
types of variables. If we use the MR(.)-operator in A2 we impose monotonicity
restrictions, and consequently analyze ordinal variables. If we use the
LR(.)-operator, which performs a linear regression of the original values, then we
analyze numerical variables. And if we use IR(.), the identity operator, then we
analyze nominal variables. In the Legendre and Legendre scheme, discussed earlier,
this corresponds with (multi-state) ordered and nonordered variables, while the
numerical variables are called quantitative. It is now relative easy to think of other
operators which can be used in A2. A very familiar one is PR(.), or polynomial
regression, which fits the optimal polynomial of specified degree. Another one,
which is somewhat less familiar, but definitely more useful is SR(.), spline
regression. Splines will be discussed briefly below. As a final example we mention
SM(.), the linear smoother used by Breiman and Friedman (1985) in their
ACE-method. The ACE-methods are nonlinear multivariate analysis methods which
show great promise, but we do not have enough experience with them to discuss
them in any detail. We can also combine monotonicity with the spline or polynomial
constraints, and look for the optimal monotone spline or polynomial.

In order to illustrate these new concepts it is, perhaps, time to analyze a
somewhat larger example. We have chosen the nitrogen nutrition example from
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Gittins (1985, chapter 11). Eight species of grass were given nitrogen treatments of
1,9, 27, 81, and 243 ppm N by varying the amounts of NaNOg3 in a culture

solution. Individuals of each species were grown separately in pots under sand
culture in an unheated greenhouse using a split-plot experimental design. There were
5 blocks of replications of the complete experiment, and consequently S x S x 8 =
200 individual pots, which are the natural units in this case. The logarithm of the dry
weight yield after a growth period of two months is the outcome variable for this
experiment. We do not repeat the data here, but we refer the interested reader to
Gittins (1985, appendix A2).

From the point of view of data analysis the most interesting problem seems
to be to predict the yield from the knowledge of the species and the nitrogen
treatment. The situation is in some respects quite similar to the zooplankton example,
because there we also has two orthogonal variables SPECIES and POND that were
used to predict ABUNDANCE. The nature of the variables is quite different,
however, in this larger example. SPECIES is a nominal (or multi-state unordered )
variable, and NITRO, the amount of nitrogen, is a numerical (or measured )
variable. But NITRO takes on only the five discrete values 1, 9, 27, 81, and 243,
and in this respects it differs from the numerical variable YIELD, which can in
principle take on a continuum of possible values. In the Legendre and Legendre
classification NITRO is discontinuous quantitative, while YIELD is continuous
quantitative. This implies that the indicator matrix for YIELD is not very useful.
Because of the continuity of the variable each value will occur only once, and the
indicator matrix will be a permutation matrix, with the number of categories equal to
the number of observations. This will make it possible to predict any quantification
of YIELD exactly and trivially, and thus the result of our optimal scaling will be
arbitrary and not informative. If we want to apply indicator matrices to continuous
variables, then we have to group their values into intervals, that is we have to
discreticize them.

Discreticizing can be done in many different ways, and consequently has
some degree of arbitrariness associated with it. Moreover if we plot the orginal
variable against the optimal quantified variable, then we always find a step function,
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because by definition data values in the same interval of the discretization get the
same quantified value. Step functions are not very nice representations of continuous
functions. It is very difficult to recognize the shape of a function from its step
function approximation. On the other hand polynomials are far too rigid for
satisfactory approximation. This is the main resons for using splines in nonlinear
multivariate analysis. In order to define a spline we must first choose a number of
knots on the real line, which have a similar function as the discretization points for
step functions. We then fix the degree p of the spline. Given the knots and the
degree a spline is any function which is a polynomial of degree p between knots,
and which has continuous derivatives of degree p - 1 at the knots. Thus a spline can
be a different polynomial in each interval, but not arbitrarily different because of the
smoothness constraints at the knots, i.e. the endpoints of the intervals. For p =0
this means that the splines are identical with the step functions, that have steps at
each of the knots. For p = 1 splines are piecewise linear, and the pieces are joined
continuously at the knots. For p = 2 splines are piecewise quadratic, and
continuously differentiable at the knots, and so on. Thus step functions are special
splines. If we choose the knots in such a way that all data values are in one interval,
then we see that polynomials are also special cases. Thus SR(.) has step functions
and polynomials as a special case, and MSR(.), which is monotone spline
regression, includes ordinary monotone regression and monotone polynomials.

We now apply spline regression to the nitrogen example. The
transformation for YIELD is restricted to be a piecewise linear spline, with knots at
0, .25, ... , 2.25. Transformations for SPECIES and NITRO are not restricted. If
we use integer coding for SPECIES, the values 1, 9, 27, 81, 243 for NITRO, and
the original data values for YIELD, we find r(S,Y) = -.47 and r(N,Y) = .42. The
squared multiple correlation (SMC) is .3960. With optimal transformation, as
specified above, we find and SMC of .7816. The optimal transformation of
SPECIES is

(-1.55 -1.31 -0.82 +0.91 +0.78 +0.71 +1.10 +0.18),
and that of NITRO is

(+1.88 -0.06 -0.14 -0.77 -0.92).

numerical ecology April 2, 1986

25

25



numerical ecology April 2, 1986

Observe that the NITRO scaling is monotonic, but not at all linear. The
transformation for YIELD is plotted in Figure 2a. We see that it is roughly
monotonic, except for eight pots with small values of yield (less than .50). In fact it
is close to linear: the correlation between original and transformed values is -.9694.
An inspection of the data, and of the analysis of Gittins in his chapter 11, shows that
it is perhaps not entirely reasonable to use the same NITRO transformation for each
species. Species 1, 2, and 3 have very similar behaviour, and average YIELD values
are nicely monotonic with NITRO, but the other species react much less clearly to
the nitrogen treatments. For this reason we have repeated the analysis with two
variables. The first one is an interactive combination of SPECIES and NITRO, with
40 categories, and the second one is YIELD. Quantifications of SPECIES x NITRO
are derived from the indicator matrix, with 40 columns, and quantifications of
YIELD by using the same piecewise linear splines as before. The transformed
YIELD is in Figure 2b. It is still almost monotonic, but less linear than the previous
transformation. The correlation between observed and transformed values is down
to -.9094, the SMC is up to .9339. Figure 3 shows the quantification of SPECIES x
NITRO, plotted as eight separate transformations, one for each species. We clearly
see the difference between the first three species and the other ones, presumably a
difference in sensitivity to the nitrogen content. A clustering of species that suggests
itself is [{1,2,3},{4,5,6},{7,8}].

The use of copies

By combining the various criteria with the various options for measurement
levels we get a very large number of multivariate analysis techniques. Nevertheless
there are some very common techniques, which are still not covered by our
developments. The major example is multiple correspondence analysis (also known
as homogeneity analysis, or Guttman's principal components of scale analysis ). For
the details and history of this technique we refer to Nishisato (1980, chapter 5), Gifi
(1981, chapter 3), Lebart, Morineaux, and Wa;wick (1984, chapter 4), and
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Greenacre (1984, chapter 5). In ecology multiple correspondence analysis was
already discussed by Hill (1973, 1974), and it is closely related to the popular
ordination method called reciprocal averaging. We derive the technique here as a
form of generalized canonical analysis.

First suppose that we want to find quantifications or transformations of the
variables in such a way that the largest eigenvalue of the correlation matrix (i.e. the
percentage of variance 'explained' by the first dimension) is maximized. We
illustrate this with the zooplankton example, using the ponds as variables ordering
the eight species. As indicated by Hill (1974) this amounts to solving the eigenvalue
problem

Cx = muDx.

Here C is the supermatrix containing all cross tables Cg;. This optimal scaling

problem was originally formulated and solved by Guttman (1941). Matrix C is
called the Burt table in the French correspondence analysis literature. Matrix D is the

diagonal of C, and m is the number of variables. The category quantifications y; are

found by normalizing the m subvectors of the eigenvector x corresponding with the
dominant nontrivial eigenvalue. In the zooplankton example C is of order 25,
because there are five variables with 5 categories each. The largest eigenvalue,
which was 3.41 with integer scaling, goes up to 3.70 with optimal scaling. The
percentage variance 'explained’ goes from 68% to 74%. Table 5a gives the optimal
quantifications for the five variables. They are quite regular and close to monotonic,
but distinctly nonlinear. |

There are now at least three ways in which the problem can be made
multidimensional. In the first place we can compute the induced correlation matrix
R, and find its subsequent eigenvalues and eigenvectors as in ordinary metric
component analysis. This is straightforward. In the second place we can change the
criterion to a multidimensional one. Thus we can maximize the sum of the first two,
or the sum of the first three eigenvalues of the correlation matrix. In general this will
give different correlation matrices, and different eigenvalue distributions. We
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illustrate this for the sum of the first two eigenvalues in the zooplankton example. In
the previous solution, which optimized the largest eigenvalue, the first two
eigenvalues 'explained’ 74% and 14%. If we optimize the sum of the two largest
eigenvalues we find 'explained’ variances of 56% and 44%. The optimal
quantifications in Table 5b make the transformed data matrix exactly of rank two. In
order to obtain this perfect fit, the technique transforms variables 3 and 4 in a
somewhat peculiar way.

The third way of finding a multidimensional solution is quite different. It
simply computes additional eigenvalues and eigenvectors of the pair (C,mD). This
defines multiple correspondence analysis. The technique was introduced in
psychometrics by Guttman and Burt (Guttman, 1941, 1950, 1953, Burt, 1950,
1953). Each eigenvector now defines a vector of category quantifications, which

induces a correlation matrix. In Table Sc, for example, we give the quantifications
corresponding with the second eigenvalue of (C,mD), which is 2.55. The

correlation matrix that goes with these quantifications has a dominant eigenvalue
‘explaining’ 51% of the variance, and a subdominant one 'explaining’ 35%. The
quantifications in Table 5c look peculiar. We could go on, of course, by using
additional eigenvalues of (C,mD).

If one thinks about this a little bit, then it is somewhat disconcerting. The

multiple correspondence problem in general has X (k; - 1) nontrivial eigensolutions,

which give an equal number of induced correlation matrices. Applying ordinary
metric principal component analysis to each of these correlation matrices gives m

times X (k, - 1) dimensions. In the zooplankton example there are thus 5 x (4 +4 +

4 + 4 + 4) = 100 dimensions. This is a bit much. Gifi (1981) calls this data
production, to contrast it with the more common and more desirable concept data
reduction. Careful mathematical analysis (Gifi, 1981, chapter 11, De Leeuw, 1982,
Bekker, 1986) shows that in many cases there are mathematical relationships
between the different dimensions, so that they are not independent. This is probably
familiar to most ecologists as the horseshoe or Guttman effect, which makes the
second ordination dimension a curved function of the first one. Remember that
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category 1 2 3 4 5

variable 1 77 .00 .00 -129 -1.29
variable 2 .85 .00 65 -1.29 -1.29
variable 3 -.69 .00 .67 58 220
variable 4 -.96 .69 51 1.33 .00
variable 5 -.96 .00 57 1.35 .00
variable 1 =77 .00 00 129 129
variable 2 =77 00 -77 129 129
variable 3 38 00 -2.64 38 38
variable 4 -38 -38 264 -38 .00

variable 5  1.00 .00 -1.00 -1.00 .00

variable 1 a7 .00 00 -1.29 -1.29
variable 2 1.07 00 -151 -07 -07
variable 3 -.21 .00 241 -140 .03
variable 4 -42 -10 2.63 -42 .00
variable 5 .98 00 -1.29 -.60 .00

Table 5: Nonlinear Principal Component Analysis
5a: Quantifications maximizing the largest eigenvalue.
5b: Quantifications maximizing the sum of the two
largest eigenvalues.
5c:  Second dimension multiple correspondence analysis.
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Noy-Meir and Whittaker (1978) already mentioned the curving of the dimensions as
an important problem for multivariate ordination, and that Hill and Gauch (1980)
consider this curvature problem the main shortcoming or correspondence analysis as
an ordination technique.

From the principal component point of view multiple correspondence
analysis does not solve an optimal scaling problem in the same sense as the other
techniques we have discussed. The eigen-equations for (C,mD) are the stationary
equations for finding the quantifications optimizing the largest eigenvalue, but
additional solutions of these stationary equations only define suboptimal stationary
values for this problem. The natural multidimensional generalization of nonlinear
principal component analysis is finding a single set of quantifications that maximizes
the sum of the first p eigenvalues, and for this problem there are no horseshoe-like
complications. On the other hand it is possible to interprete multiple correpondence
analysis as a form of generalized canonical analysis. If we think of each category as
a binary variable, while the original variables define sets of these binary variables,
then a generalized canonical analysis of these m sets is identical to multiple
correspondence analysis. With binary variables there is nothing to transform or
quantify, and thus we have an essentially linear technique applied to indicator
matrices.

A somewhat more satisfactory description is possible by introducing the
notion of copies (De Leeuw, 1984a). This also means that we define sets of
variables using the original m variables, but now a variable is not split up into
categories. If we are interested in a two-dimensional solution, for instance, we take
two copies of each variable in each of the m sets. We then optimize the sum of the
first two generalized canonical correlations over quantifications. Thus a set consists

of two identical variables, identical in the sense that the functions ¢; and ¢,, mapping

Q into I'y =T, are the same. Of course the quantifications yq and y; can be

different, and because the variables are in the same set they will generally be
different at the optimum of the criterium. In fact the two quantifications can without

loss of generality be chosen to be orthogonal, i.e. we can require y{'Dy) = 0. Using
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p copies of a variable to define m sets of p variables in this way defines multiple
correspondence analysis as a special case of generalized canonical correlation
analysis.

But this way of looking at things immediately suggests several useful
generalizations. In the first place we can use a different number of copies for
different variables. It is reasonable, in many cases, to use copies for unordered
multi-state nominal variables only, and to use a single copy for ordinal variables. In
the second place the notion of copies can be combined with the various measurement
levels we have discussed above. Thus we can require copies to be monotonic (in that
case they can not also required to be orthogonal), or we can require that some copies
are monotonic, while others are free. If there are two copies of a variable in a set, we
can require the first one to be linear, and the second one to be free. And so on. This
is again a decision about the coding of a variable. For each variable we have to
decide what measurement level we impose, and we also have to decide how many
copies of the variable we use. We do not illustrate the use of copies with our
zooplankton example, because the solution using the first multiple correspondence
analysis dimension (which optimizes the largest eigenvalue of the correlation matrix)
is already monotonic, and quite satisfactory. Using rather complicated procedures on
such a small example is bound to produce trivial and uninteresting solutions, as the
technique that maximizes the sum of the two largest eigenvalues already shows.

The notion of copies is not limited to principal component analysis, i.e. to a
generalized canonical correlation problem with only one variable in each set. In other
forms of canonical analysis we can use copies as well. In fact we can even decide to
include copies of a variable in different sets. If we include a copy in each set, then
the largest generalized canonical correlation will be unity, and it will be defined
completely by this (quantified) variable. The remaining canonical variables will be
orthogonal to the first, i.e. to this quantified variable. Thus using a copy of a
variable in each set amounts to performing a partial canonical correlation analysis,
with the variables of which copies are used in the sets partialed out. Combining
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partitioning into sets with the various measurement levels, and with the notion of
copies, gives an even richer class of techniques (De Leeuw, 1984b).

Some computer programs

It is nice to have a number of principles and technical tools that can be used
to create very general nonlinear multivariate analysis techniques. But it is perhaps
even nicer to know that some of the possible options have already been combined
into various series of computer programs, and that these programs are readily
available. The ALSOS series of programs comprises programs for analysis of
variance, multiple regression, principal component analysis, factor analysis, and
multidimensional scaling. An overview is given by Young (1981). The GIFI series
has programs for correspondence analysis, multiple correspondence analysis,
principal component analysis, canonical correlation analysis, path analysis, and
multiple-set canonical analysis. Gifi (1981) has the necessary references. A relative
newcomer is the ACE series, discussed in Breiman and Friedman (1985). There are
programs for multiple regression, discriminant analysis, time series analysis, and
principal component analysis.

The three series of nonlinear multivariate analysis programs differ in many
respects, even if they really implement the same technique. The various possibilities
of choosing the regression operators differ, the algorithms differ, and the input and
output can also be quite different. But it is of course much more important to
emphasize what they have in common. All three series generalize existing linear
multivariate analysis techniques by combining them with the notion of optimal
scaling or transformation. Thus they make them more nonparametric and less
model-based, more exploratory and less confirmatory, more data analytic and less
inferential.

34
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Discussion and conclusion

We have introduced our nonlinear multivariate analysis techniques without
referring to any statistical model. As we briefly indicated in an earlier section our
derivations and ideas also apply directly to correlations defined in the population,
i.e. to the transformation or quantification of random variables. In the book by Gifi
(1981) many population models are discussed, and the behaviour of our techniques
when they are applied to random samples from such models is also analyzed. For
the population models we also refer to Breiman and Friedman (1985) and their
discussants, to De Leeuw (1982), and to Schriever (1985). The statistical stability
of our techniques can be studied by using asymptotic techniques such as the delta
method, and the modern resampling techniques such as the Jackknife and Bootstrap.
Gifi (1981) gives examples. Also compare De Leeuw (1984c¢). Observe that stability
is an important consideration here, because we fit many parameters. We must guard
against chance capitalization, i.e. against the possibility that our results and our
interpretations are based on haphazard properties of the sample. Techniques of
testing the stability (or significance) of generalized canonical correlations have been
discussed by De Leeuw and Van der Burg (1986). Although these techniques for
analyzing stability are often expensive computationally, we think that in almost all
cases the extra computations are quite worthwhile. A confidence band around a
nonlinear transformation, or a confidence ellipsoid around a plane projection give
useful additional information, even if the random sampling assumptions do not seem
to apply.

Books such as Legendre and Legendre (1983), Gauch (1982), and Gittins
(1985) have already shown to ecologists that linear multivariate analysis techniques,
if applied carefully, and by somebody having expert knowledge of the subject area
in question, can be extremely helpful and powerful tools. It seems to us that
combining multivariate exploration with automatic reexpression of variables is an
even more powerful tool, which has already produced interesting results in many
different scientific disciplines. We think that they show great promise for ecology
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too, but we must emphasize that perhaps even more care, and an even more expert
knowledge of the ecological problems, is required. Attacking very simple problems
with very powerful tools is usually unwise and sometimes dangerous. One does not
rent a truck to move a box of matches, and one does not use a chain saw to sharpen
a pencil. The techniques we have discussed in this paper are most useful in dealing
with large, relatively unstructured, data sets, in which there is not too much prior
information about physical or causal mechanisms. In other cases, often better
techniques are available. But these other cases occur far less frequently than the
standard mathematical statistics or multivariate analysis texts suggest.
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