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Among physicists at large, there is comparatively little
‘inquiry into why or how they do what they are doing, and
this is not to be deprecated, because human activities are
inhibited by intro- spection. (Synge, 1960, p. 3).

Introduction

One of the purposes of this paper is to compare, and to a certain extent contrast, two
different approaches to the use of models in science. The two approaches are illustrated
with Figure 1, a picture of a scientist arriving at the Forum. In the first case the scientist
starts by selecting a model from the model box, he then grabs data from the data box, and
holds them against the model. If they don't fit, he rejects the model and throws it away.
The Forum applauds. On the other hand if the data do fit he holds on to the model. There
is some applause, but not as much. If he has time he grabs new data, and he goes on until
either they do not fit the model, or until his time is up. In the second interpretation of the
picture the scientist begins by selecting the data. He then grabs a model from the model
box, and holds it against the data. If it does not fit, he throws it in the trash. Not much
applause. He then grabs another model, and so on, until he has found one that fits, or until
his time is up. He holds on to the one that fits, if he finds one. There is also some applaus
in that case.

INSERT FIGURE 1 ABOUT HERE

The picture and its interpretations illustrate a somewhat more serious quotation from a
recent textbook on system identification. "Mathematical models may be developed along
two routes (or a combination of them). One route is to split up the system, figuratively
speaking, into subsystems, whose properties are well understood from previous
experience. This basically means that we rely on "laws of nature” and other well-
established relationships that have their roots in earlier empirical work. These
subsystems are then joined mathematically and a model of the whole system is obtained.
This route is known as modeling and does not necessarily involve any experimeniation on




the actual systems. ... The other route to mathematical as well as graphical models is
directly based on experimentation. Input and output signals from the system ... are
recorded and subjected to data analysis in order to infer a model. This route is system
identification." (Ljung, 1987, p. 6).

Figure 2 illustrates system identification according to Ljung. It is clear that some extent
the two interpretations of Figure 1 are integrated here, because there is feedback in the
loop, but the emphasis is on the second interpretation. Models are actually calculated. In
system identification models are often thought as black boxes, as long as they describe
the input-output behaviour of the system it is not really interesting or relevant if their
functional form is correct or true. In recent years passionate pleas for using system
identification, in stead of modelling, in social sciences areas such as economics and
psychology have been published by R.E. Kalman (1982a, 1982b, 1983). The argument is
that in these 'soft' sciences there is not enough prior knowledge to use modelling.
Modelling in social sciences will inevitably be based on prejudices, not on valid prior
knowledge derived from experience. We shall return to this discussion further on in the

paper.
INSERT FIGURE 2 ABOUT HERE

The two interpretations of Figure 1 discuss possible behaviours of the scientist. On the
other hand we also have to acknowledge that there is another profession, that of
statistician, which is at least to some extent independent of any one particular science.
One can be a statistician without being a psychologist, or a physicist, or a biologist.
Statisticians are also concerned with the relation between data and models, but on a
different level. In the discussion of the figure we have argued that the scientist 'holds the
data against the model' and 'draws data from the data box'. This is vague, and can be
made concrete in various ways. The statistician develops tools to carry out these
activities. Tools vary in quality, in degree of sophistication, and also in price. It is very
important to remember this analogy with tools: if you go to the statistician, you are going
to buy a tool. Some people will try to sell you a tool which is far too expensive and
elaborate for your purpose, and no matter where you go there will always be commercials.
Bayesian commercials, frequentist commercials. Many statisticians will try to convince
you that what you have been doing in the past is incorrect, that using tools other than the
ones offered by them is irresponsible, or even incoherent. But these are all commercials,
and they should be evaluated as such.

Statisticians are instrument makers, tool builders. This is a difficult and honorable
profession, but it is not science. Of cource scientists can be part time statisticians. But it
is important to distinguish the two types of activities, and to recognize that statisticians
do not make statements about the truth or generalizabilty of results. This is not their
responsability. Not our responsabiltiy, I should say, because I am a statistician. This
paper looks at the way some of our tools are being used these days. I will do my utmost
to avoid being an old-fashioned prescriptive statistician. Thou shalt not indulge in the




abomination called factor analysis, thou shalt not correlate rank numbers, and all that
nonsense. On the other hand I do feel some responsability for the use of these tools, the
same type of responsabiltiy that people should feel who make cigarettes or chain saws or
boxing gloves or guns.

Mathematical models :

Let us start by defining more precisely what we mean by a mathematical model. There is
a nice and quite detailed discussion, with many relevant examples, in Saaty and
Alexander (1981). We restrict ourselves to the simple case in which the data is an
element of a real linear space A. The model Q is a subset of A. The interpretation of the
model is that 1 € Q, where 1 is some idealized version of the actual observations y. For
instance, N could be y without measurement errors, or 7 could be y without sampling
errors, and so on. We write this as y = 1 + €. Here € is error, and + stands for some
arbitrary composition rule, not necessarily addition. Errors usually have two aspects. In
the first place they are supposed to be unsystematic, that is unrelated to the idealized
values M. If errors are systematic, the model is misspecified. We write this requirement
as € 1 n, where 1 may mean orthogonality or independence, or whatever. In the second
place the errors are hopefully small. Although this smallness of the errors is certainly not
an essential property of the model, it is true that in practice a model is useless if the
systematic part 1 is swamped by the errors. Thus we require that llell is small, or at least
that llell/imll is small.

Now why do we use this Q ? And why do we have to talk about 1, in stead of just being
satisfied with y ? There are many reasons to use models, in particular mathematical
models, and there must be at least 1000 books each year which mention these reasons. A
few keywords are consequently enough for our purposes. Models provide links with
previous knowledge in the subject field, thus making it possible for science to be
cumulative and for scientists to communicate efficiently. Merely submitting the data y is
not considered satisfactory by the editors of most journals. Models provide interpolations
and extrapolations, thus making it possible to predict data which have not been observed
(yet). We can apply deductive reasoning methods to models, and derive consequences
which may not have been obvious. And models are filters of our data. They make it
possible to weed out the errors, and thus to provide us with more stable or more reliable
information. This stabilizing property of models, which is very important, is illustrated in
Figure 3, discussed in De Leeuw (1988). This figure refers to a model for the covariance
matrix, such as factor analysis or a LISREL model. The model Q is the surface Z(8), we
use X, for the hypothetical 'truth', and T, and S, are two observed covariance matrices

based on n observations. Fitting the model means projecting the observed matrices on
the model. Projecting the data on the model gives us a version of the data which is ‘less
true', but often more stable. As I have pointed out before (De Leeuw, 1983), one should
never think of models as being true or false, in the same way as one should not think of
techniques as being wrong or correct. Although many people are emphasizing this point
these days, I think it cannot be overemphasized. I will thus emphasize it a bit more.



INSERT FIGURE 3 ABOUT HERE

In the introduction to his chapter on Classical Mechanics in the Encyclopedia of Physics
(Fliige, 1960) Synge asks how it is possible that there exist several successfull
dynamical theories, which contradict each other. Obviously they cannot all be true.
Synge's conclusion is that none of them is true. Mathematical theories are no more than
maps of nature, indeed the connection between the equations and the physical reality is
€ven more remote than that between the map and the country (which at least both exist
in the physical world). In the words of Ljung (1987, page 6) there is an inpenetrable but
transparant screen between the world of mathematical descriptions and the real world.
Synge (1960, page 4) uses another model: there is a three-column dictionary, with a name
in the first column, a mathematical concept in the second column, and a physical concept in
the third. "The hypothetical distionary is used as follows. A physical problem is first
formulated in terms of physical concepts. It is then translated into mathematical concepts
by using the same words now with their mathematical meanings. Mathematical laws
(usually differential equations) are found by a similar translation of physical laws, first
stated in terms of physical concepts. The application of these laws to the problem in
question then presents a problem in pure mathematics, and, when this problem has been
solved, the conclusion is translated into terms of reality by restoring to the words their
physical meanings." Synge goes on to remark than this description would have seemed
ridiculously elaborate to physicists and mathematicians of the nineteenth century, who did
not have such a clear distinction between physical and mathematical concepts. But it does
explain why different maps can be useful. As Ljung points out, it also indicates that we
should not think about models in terms of ‘truth’ but in terms of 'usefulness’. The concept
of a 'true system' is a fiction, which is sometimes useful. In fact assuming that there is
something like the truth, which we are trying to discover, is in itself a model of our
scientific activities. "Any mathematical theory of physics must idealize nature. That much
of nature is left unrepresented in any one theory is obvious; less so, that theory may err in
adding extra features not dictated by experience. For example, the infinity of space is
itself a purely mathematical concept and all theories erected within this space must share
in the geometrical idealization already implied. Indeed, it is difficult to find any theory that
does not contain infinities, and infinities, by definition, are unmeasurable. While at one
time certain theoretical statements were regarded as "laws" of physics, nowadays many
theorists prefer to regard each theory as a mathematical model of some aspect of nature."
(Truesdell and Toupin, 1960, p. 231).

Models in statistics

We have seen why scientists use models. It remains to be seen why statisticians use
models. In the first place models suggest tools. If a model seems appropriate or important
from extra statistical considerations, then we can design a tool which is especially
appropriate (or even optimal) for this model. This is actually the bread and butter of a
whole generation of mathematical statisticians. There are some general statistical
principles, such as least squares or maximum likelihood, which are applied to particular




models to produce techniques. It has been emphasized (for instance by Gifi, 1981) that
models suggests tools in this way, but conversely tools can also suggest models. As long
as models and techniques are in one-one correspondence by the optimality relation, it is
as easy to go from the model to a technique which is optimal for it as it is to go from the
technique to a model for which it is optimal. Gauss, for instance, started with the
technique least squares and proved that it was optimal for normally distributed errors.

Figure 3 also suggests clearly why models are useful to improve techniques. If there is
prior information about the scientific situation, then it is useful to take this into account in
defining the technique, because using this prior information will improve the precision and
stability of the technique. We have to remember here that if the prior information is
merely prejudice in the sense of Kalman, then using it may introduce bias. And this bias
can easily offset the gain in stability.

It is important to realize that building models is not really the task of the statistician, it is
the task of the scientist. The scientist is supposed to know if certain assumptions are
realistic, and if they apply to his situation. It is strange that a statistician has to assume
for the scientist that the regressions between his variables are linear, and that his
disturbance terms are normally distributed. It has certainly be true in the past that
statisticians have build stochastic models for scientists. This is not really a problem, as
long as we continue to distinguish the two types of activities that are going on here. We
have already seen that the scientist can be a part time statistician, and certainly the
reverse is true as well. But the point of view of statisticians has usually been to apply the
general principles, such as maximum likelihood, and to suggest functional forms which are
not too complicated, in the sense that they lead to feasible techniques. These are not
necessarily the same considerations as the ones a scientist interested in the content
matter would use.

There is also model-free statistics. This is, strangely enough, a controversial statement.
As I have said elsewhere, it is possible to cross the street without first formulating a
model for the probability that you safely reach the other side (De Leeuw, 1988). In the
same way it is possible to make a scatter plot and to draw a straight line through the plot
without assuming that errors are normally distributed. Or to apply LISREL without
assuming multivariate normality, or even without assuming random sampling. Statistical
techniques are tools, and tools can be applied in situations for which they were not
specifically designed. One can use a knife as a screwdriver, an ax as a hammer, a book as
a paperweight, and so on. We do so all the time. There is a tendency among statisticians
to panic if people apply LISREL when regressions are obviously not linear, because the
technique is not optimal in that situation. Who cares ? Why spend a lot of energy on
developing a technique which is optimal for a model which is known to be untrue anyway.
We might as well, in fact better, use a technique which does its job reasonable well in a
wide variety of situations.



We have seen above that one of the useful aspects of models is that they make
communication between scientists easier. Publishing the data is usually not possible. On
the other hand we can, and often do, publish parts of the data, in the form of cross tables,
regression equations, box plots, ANOVA tables, and so on. Statisticians would like to
make us believe that if we publish regression weights we really have assumed implicitly’'
that our errors are normally distributed. I think this is nonsense. It is possible to vote
without being a member of a political party. If we report a t-statistic we have merely
taken the poiint of view that if we compare two means, then it makes sense to divide by
the pooled standard deviation in order to get a scale free measure of the difference. Thus
publishing summeries of the data, results of applying statistical tools, do not presuppose
the use of models.

Case study: we start with the model

At this point it may be interesting to look at some case studies of modeling, on one side,
and system identification, on the other side. The modelling interpretation of Figure 1 is
certainly the most familiar one. It is what Suppe (1977) calls the "received view". It is
associated with Popper's 'conjectures-and-refutations' philosophy of science, and with
traditional statistical modelling. It assumes that we start with a model (theory,
hypotheses). This model leads to certain predictions about reality. We then investigate
whether these predictions are true or false. This particular philosophy does not pay any
attention to the fact where the model comes from. We could have adopted it by careful
deductive reasoning in some axiomatic system, but also by reading tea leaves or by using
hallicinatory drugs. There are no laws in the context of discovery, everything goes. Some
procedures are perhaps more successful than others, but why this is the case remains a
mystery. All that matters is the context of justification, this is where there are some
very strict rules that must be obeyed.

We choose an first example, only partly from the social sciences. Let us suppose that
there is a physical scientist Robert Hooke, who has an idea about spring balances. After
long deliberation, using a great deal of prior experience, and perhaps some metaphysical
ideas about the relation between measuring experiments and the time of the day, he has
come up with the idea that the extension of the spring balance will be proportional to the
weight applied to it, with the proportionality factor depending on the particular balance he
is using. I am not saying, by the way, that the historical person Robert Hooke did indeed
find the law of the spring by such considerations. In fact the actual history of the discovery
suggest that the system identification description of how this model was found is much
closer to the truth. The model is that x; = Ba,, with a, the weight of object i (in kg), with B
the constant describing the spring balance, and with x, the extension caused by applying
object i to the balance (in cm). How does Robert Hooke find out if his law fits the data ?
He simply plots the x; against the a,, and he looks if the resulting points are on a line
through the origin. The slope of the line gives the value of . If a different spring is used,
then we simply find a different line through the origin.
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Now for our second example. The psychologist Charles Spearman had the idea that
scores on intelligence tests will be proportional to the intelligence of the individual taking
the test, with the proportionality factor depending on the particular test. Thus he also
assumes (presumably taking Robert Hooke and physical scientists like him as his role
model) a linear law of the form x, = Ba,, with a, the intelligence of individual i, with f the
constant describing the test, and with x; the intelligence test score (in number of items
correct, for instance). Although the models of Robert Hooke and Charles Spearman look
very similar, there are some far reaching differences.

The first difference that is immediately apparent is that Robert Hooke can use any number
of additional independently validated instruments to find out what a, is. They do not have
to be spring balances (although they could be), they can be other types of scales as well.
Basically we assume that a, is known, and can be used in the verification of the law of the
spring. We can actually plot x; against a,. For Charles Spearman the situation is more
complicated. His a, the intelligence of person i, cannot be measured by more basic
measurement procedures and we cannot make the actual plot of test scores against
intelligence. Thus it seems that the law proposed by Spearman can never be falsified or
verified.

But early in this century psychologists realized that if we have two tests, then the two
laws x;, = B,a, and x,, = B,a, can easily be combined to x; = (B,/B,)x;,. This new form of
the law does not involve the unmeasurable a, any more. This basic idea is really all there
is to factor analysis, most subsequent developments are really only technical refinements.
If we have m tests, then in a similar way x; = a,3; merely says that the n x m matrix X =
{x;) has rank one. This rank condition on the matrix of observed test scores does not
involve the concept of intelligence, and does not suppose that independent measures of
intelligence are available. In stead, it defines intelligence. We call a variable, defined on
our population of individuals, the intelligence of these individuals if the test scores of
these individuals are linear functions of this variable. Observe that Robert Hooke, by
using m spring balances, could have defined the weight of an object in exactly the same
way. If weight is interpreted as a latent variable, then it is still possible to measure it
given at least two spring balances. It seems that, in the second analysis, Charles
Spearman is not worse off than Robert Hooke.

But this is deceptive. Although the measurement theoretical properties of weight
measurement and intelligence measurement secem to be identical, the practical
implementation of the two programs rapidly showed the enormous differences. In the first
place tests do not have a natural unit. Number of items correct is easy enough to use, but
it seems to use the idea that each item is equally important (it is like using the number of
equal weights needed to get equilibrium in a pan balance as a measure of weight). In the
second place the psychologists have to agree that the tests they use are all tests of
intelligence. This presupposes a lot of agreement on the nature of intelligence, and there
is no such agreement. Not then and not now. Thirdly there is the unfortunate fact that all

measurements have a certain error associated with them. For Robert Hooke this is no



real problem. His errors are small, and can be made much smaller by various technological
refinements. Spearman perhaps tries to minimize the influence of measurement errors by
increasing the number of tests. But he can only do this by adding tests that are valid, i.e.
tests that measure intelligence and nothing else. Fourthly it turns out that Robert
Hooke's model indeed describes the behaviour of spring balances, at least under
relatively normal circumstances. Charles Spearman's model does not describe the
behaviour of intelligence tests at all well. Psychologists have tried to repair this
unfortunate situation by blaming measurement errors. This was not very convincing. The
next step was to blame the selection of tests. The conclusion of this phase was aptly
summarized by Wolfle (1940). If we take a battery of tests and remove all tests that do
not satisfy the Spearman model, then the remaining tests do indeed satisfy the Spearman
model. It is clear that such manipulations are suspect, and also that they are possible
because there is no agreement on the nature of intelligence. If a spring balance does not
satisfy the Hooke model, then we reject the model. We are not going to argue that this
object is not really a spring balance.

What do we learn from this example ? The most ambituous attempt so far in psychology
to build a mathematical model from various bits and pieces has failed rather miserably. In
the end we can see that although Spearman certainly did take some empirical evidence
(mostly of a qualitative nature) into account while building his model, the main
components were indeed prejudices. There was the (very important) eugenistic prejudice,
which made it desirable to rank persons on a single scale (De Leeuw, 1986). There was
the desire to be respectable scientifically, and to work with measurable one-dimensional
scales. And after twenty five years of sloppy mathematics and analysis of often very
small data sets, the model consisted almost completely of prejudices, and the arguments
around it became fundamentalist quarrels. It may be true, by the way, that factor analysis
is a poor example. But the other examples that I am familiar with are about equally poor.
The quantitative genetic models have failed to teach us anything about the transmission
of human traits, even of traits as simple as body weight. It seems that they also have not
been very successfull in controlled breeding experiments with plants and animals.
Economic models, based on rational considerations, have been quite unsuccessfull in
predicting economic developments.

Case study: we start with the data

Now let us look at the second interpretation of Figure 1, that of the system identification.
The chemist Beer is interested in spectroscopy, i.e. the absorption of photons by a
chemical specimen as a function of the energy of the photon. The chemical specimen
consists of various quantities of a number of distinguishable light-absorbing entities, or
chromophores. Let us now measure x, the negative logarithm of the fraction of the
intensity of a beam of light of wavelength i which passes through a solution with
concentration b of a certain chromophore. Chemists use Beer's law, which says that x; =
ab. If we use different solutions j, with different concentrations of the chromophores, then
x; = a)b;. If the solutions contain p different chromophores, in different concentrations, then




Beer's law becomes x; =X} a,b,. In many instances in spectroscopy the number of
chromophores p is unknown, and so are their concentrations b, and their extinction
coefficients a,. In chemometrics factor analysis is often used to estimate all these
quantities (Malinowski and Howery, 1980).

A comparable situation in psychology. Suppose we have measurements of n individuals
on m tests, where all tests seem to have something to do with aptitude. Collect them in
an n x m matrix X = {x;}. The psychologist Leon Thurstone made Spearman's theory
empirical in the sense that he did not suppose that there was only one factor determining
the relationship of the tests, the number of factors had to be determined empirically from
the data. In the model box there are various factor models, with various numbers of
factors, and we look until we find one that fits out data. In the same way the engineers
using system theory start with a box filled with linear dynamical systems (or ARMAX
models). These models vary in the dimensionality of the state space, and we look until
we have found a system which fits the data.

This identification approach, which clearly starts with the data, has been quite unpopular,
at least among post-positivist philosophers and sophisticated social scientists.
Thurstone's multiple factor analysis may have gotten us away from Spearman's apriorism,
but it actually lead to anarchy. The latest estimate is that there are more than one
hundred factors of intelligence, and they can all be measured independently by
constructing suitable tests. This is clearly the end of a research programme. Nevertheless
it is useful to point out that there are certain areas in science in which this particular
approach is indeed taken seriously. We start with a quotation from Isaac Newton (1687).
"But hitherto I have not been able to discover the cause of those properties of gravity
from phenomena, and I frame no hypothesis; for whatever is not deduced from the
phenomena is to be called an hypothesis; and hypotheses, whether metaphysical or
physical, whether of occult qualities or mechanical, have no place in experimental
philosophy. In this philosophy particular propositions are inferred from the phenomena,
and afterwards rendered general by induction.” Similar ideas were quite influential early in
this century because of the philosophical work of Pearson and Mach, who thought that
scientific laws were efficient summaries of long lists of sense data. In general they seem
to appeal to physical scientists and engineers. Applications to the social and behavioural
sciences are quite rare, perhaps because of the debacle of factor analysis. Only more
recently we find attempts to revive the empiristic approach there as well. "Le model doit
suivre les données, non l'inverse." (Benzécri, 1980, pag. 6). We shall review a recent
example.

Causal models ex machina

With the increasing sophistication of data analysis techniques, the fact that much better
and larger data sets are available, and the increases in computer power, there have been
new hopes for the empiristic program from the second interpretation of Figure 1. Dynamic
systems models and Kalman fiitering techniques of prediction and control have been very
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successfull in helping to put men on the moon, keeping satellites in orbit, regulating
hydroelectric plants, and so on. As we have seen these models often take a simple black
box approach to modelling. We measure input and output of the system, and we select
from the model box until something fits. Then this surviving model is used for prediction
and control.

The failure of factor analysis to produce a coherent model for intelligence testing can, of
course, be attributed to the limitations of the factor analysis model, which does not take
any external variables into account, and to the particular subject area, which may be very
complicated. Models which do not have the limitations of the factor analysis model, and
which combine features of factor analysis with the simultaneous equations models of
econometrics and the path analysis models of genetics, have been very popular recently.
They are called causal models, or simultaneous equations models with latent variables,
or, quite inappropriately, LISREL models. The basic idea is probably familiar. A path
diagram is drawn, with arrows connecting the variables. Arrows are then translated into
linear relationships between the variables, and a technique such as LISREL or EQS is
used to fit the model to the data.

Perhaps the best introduction to simple path analysis and the problems connected with it
is Freedman (1987). In LISREL and EQS there is the additional complication that some
variables, which seem relevant from theoretical considerations, cannot be measured
directly. In stead we msure one or more indicators of this variable. Intelligence is the
prime example, but social economic status and permanent income are similar constructs.
In econometrics the related notion of a variable measured with error has been studied in
detail. In system theory Willems (1988) has recently pointed out that latent variable
terminology can also be used to describe state space realizations of linear dynamic
systems. The number of path models for a given number of variables is very large,
especially if we admit latent variables and correlated measurement errors. Now we can
imagine applying the empiristic strategy here as well. We have data, usually in the form
of a covariance matrix S, and we look in the box of LISREL models until we have a model
with a satisfactory fit.

How do we search in the space of causal models, an essentially discrete structure with
zillions of elements ? There has been a lot of work which seems relevant to this question.
In statistics some tools have been introduced which make it possible to compare models
in terms of fit. Not straightforward fit, of course, because then a models with more
parameters would always be preferable to a simpler model with less parameters. Various
combinations of fit and simplicity have been proposed, for instance by Akaike, Schwartz,
and Hannan (compare De Leeuw, 1988, for a discussion). Willems (1986) discusses
abstract versions of the same type of procedures under the name approximate modelling
in the context of linear systems. Unfortunately there seems to be a proliferation of model
selection tools, so that it seems that we will need a tool to select model selection tools in
the not too distant future.
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The major computer programs for fitting causal models with latent variables all have tools
build in to search through the space of models. This is a feature which they are required to
have, for commercial reasons. We shall look in a but more detail at an even more recent
attempt to generate theory by computer. Glymour et al. (1987) have programmed a search
procedure in their computer program TETRAD. Their commercial is based on another
intellectual catch phrase of these troubled times: Artificial Intelligence. I do not want to
sound prejudiced, and certainly not old-fashioned, but I suggest that anything which
prominently features the label Artificial Intelligence hould be approached with a great deal
of mistrust. If we look at the implementation details of TETRAD we find a simple
objective function which is minimize by straightforward search techniques over the space
of graphs. The choice of the loss function is not explained very well, and the function itself
looks quite unattractive and clumsy. But in Spirtes et al. (1988) the performance of
TETRAD is compared with the model search procedures in the LISREL and EQS
programs, which are based on modification and fit indices. TETRAD recovers true models
better than these other procedures.

I am not impressed. In the first place this is a Monte Carlo study, and we have no idea
how these results will hold up in general. In the second place the fact that one dubious
technique outperformes two other dubious techniques does not make it any less dubious.
Thirdly it is clear that in situations like this the starting model, the place where the search
begins, will be very important. This means that choice of the starting model still requires
the same sort of knowledge that choice of model requires in the case where one does not
apply search. Fourthly it is unknown, and anybody's guess, what these search procedures
do to the stability of the results.

Glymour et al. are not fools. They know their philosophy of science, and they are able to
demolish most of the arguments against causal modelling of Freedman and others (De
Leeuw, 1985, Freedman, 1987). This is because these arguments are in absolute terms,
and take the standard framework of statistics for granted. That linear causal models are
literally false, for instance, is not really an objection. We have already seen that. That the
assumptions are not tested is merely a reflection on actual practice. They could be tested,
and sometimes they are tested. Glymour et al. argue, quite convincingly, that the
situation in the social and behavioural sciences is not really different from that in physics.
As we have seen in comparing Hooke and Spearman, there is something to be said for
that.. The difference is more subtle than the critics of causal modelling suppose. The
argument should not be that the assumptions are not tested, the argument should be that
the assumptions are often untestable, because replication is impossible. Moreover
questions whether social science data are normally distributed or not are usually quite
irrelevant. In many cases probabilistic models do not make sense at all. The level of error
in social science modelling, which is not essential from a methodological point of view,
destroys both the credibility and the generalizability of many results. Unlike bridges and
other simple physical structures, social and behavioural science models crumble and
collapse. Not only if you try to use them, but even if you look at them carefully. In fact it is
usually unclear how one could use these models in the first place. Although it may be
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attractive it specify one's prior information in the form of a graph, it usually requires far too
much prior knowledge to do this in any detail. There may be some global properties of the
graph which seem quite certain (relations based on order in time, for instance), but details
will be largely arbitrary. We can use a program such as TETRAD to fill in the details, but
the stability of the resulting solutions will be doubtful and the usefulness of the detailed

aspects of the fitted model even more so.

Data analysis

If we look at Figure 1 and its two interpretations a little bit more in detail, the differences
between the two approaches turn out to be mainly questions of emphasis. The
interpretation in which the scientist walks in with a model, and tests it, does not say
where he got this model from. This means that he may very well have found it by using
system identification techniques, i.e. by using the second approach. The difference then is
that the first interpretation does not talk about the phase in which people construct their
models, because it feels that this does not properly belong to science, or rigorous science.
Nevertheless there is little doubt that off stage modellers do it too. On the other hand
system identification people do not really talk very much about the contents on the model
box. They seem to think that every conceivable model is in that box, but in actual practice
of course the box contains only finite dimensional linear systems, or factor analysis

~ models, or LISREL models. This means a great deal of modelling has already gone into
the filling of the model box, before the identification starts. In fact fitting a statistical
model, also in the first approach, often amounts to choosing a number of free parameters.
Thus we do not really hold the data against the model, but we look if there is an instance
of the model close enough to the data. In Figure 3 we project on the model, because the
model is not a single covariance matrix, but a surface in the space of covariance matrices.
Or, to put it differently, in comparing data and models we also perform selection from the
model box. The model is not a black box, about the contents of which we cannot say
anything, it is a gray box, whose contents are known up to values of a number of free
parameters. Thus we see that the modelling approach and the system identification
approach can easily be interpreted as two different phases in the same cyclic process.
There is no confirmation without exploration, no induction without deduction, no inference
without description. In stead of talking endlessly about Aristotelian dichotomies like this,
we had better get to work. Some of you may have some modeling to do, and I can perhaps
construct and sell another useful tool.

A final word about the nature of the tools. We have seen that some tools are data
presentation tools. Graphics, plots, tables and so on are simple examples, but even
complicated LISREL models derive most of their popularity from the graphical component,
the path diagram. The statistical superstructure is used to sell LISREL to unsuspecting
audiences, but it is largely irrelevant and its appropriateness is highly debatable. If
LISREL or a similar program is used to describe the dependence/independence structure
between variables, then the relevant question is whether it is the best tool for that
purpose. We know that there are a number of special cases of the model, basically the
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recursive or block-recursive path models with independent errors, in which there is a nice
probabilistic interpretation of the graph in terms of partial independence. In such
situations the graph seems to give useful information in a compact and pleasant form.
Because detailed values of path coefficients are usually not very reliable, it seems wise to
limit oneself to block-type models in which either no between-block paths or all between-
block paths are drawn. This makes the figures particulary simple to interprete, and
actually by follwing this strategy we stay close to classical regression, canonical
analysis, and factor analysis. The detailed search, as performed by TETRAD, focuses on
uninteresting and unstable aspects of the description.

Summary

Complicated fitting procedures with many parameters are dangerous techniques,
especially if they masmasquerade as inferential techniques. We use very little information
from the data, and we do not impose restrictions of a strong type on the representation.
This type of program appeals greatly to many social scientists, who are very unsure about
the value of their prior knowledge. They prefer to delegate decisions to the computer, and
they expect techniques to generate knowledge. This strategy leads, all too often, to
chance capitalization, triviality and degeneracy. Hypotheses are never rejected, and
investigators are constantly making errors of the second kind.We impose so little prior
knowledge that the data, including all outliers, stragglers, idiosyncracies, coding errors,
missing data, completely determine the solution. As a consequence results can, of course,
never be replicated. This is the empiristic and technological approach, popular in applied
psychology. On the other hand is it well known that if we pay too much attention to errors
of the second kind, then social scientists can say absolutely nothing. This is also
considered to be an undesirable state of affairs. It can be circumvented by introducing vast
quantities of prior knowledge, as in as in clinical psychology, personality psychology, and
some of sociology. Of course in many cases the prior knowledge is nothing but prejudice,
and it so dominates the investigation that the results become almost independent of the
data. These two extremes define the dilemma of much applied empirical social science.
According to the canons of scientific respectability we can say almost nothing, and the
things we can say are likely to be trivial.

There is one way out of this problem, and I think this way out is quite legitimate. In fact,
many applied researchers already take this way out. If we have done a large scale
investigation on the relationship between intelligence tests, we do not assume the factor
analysis model. We merely describe the correlation between the tests as good as
possible, using all the tools provided for this purpose by statisticians. Perhaps factor
analysis, interpreted as a data presentation tool, is one of them. But there is no reason,
so far, to take it seriously as a model that describes what really is going on. The same
thing is true if you study formation of attitudes on the basis of information and
background. Do not assume that the Fishbein model is true, but simply present the data
in such a way that it becomes clear that some groups of partial correlations are
systematically small. Model testing is far too pretentious is this case, we are still finding
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mm,

out what the facts are, it is too early to define what the building blocks for the model are.
The same thing is true for the analysis of school careers. Throughout the last fifteen years
I have followed the development of ‘causal' school career models for the Netherlands. This
research programme has been progressive, I think, because all unnecessary and unstable
braches have been trimmed from the models. What is left, however, is quite trivial. The
scores on the intelligence test and the advice of the teacher in the sixth grade determine
the choice of secondary education. The choice of secondary education determines the
career in secondary education. As a consequence I find the tables and graphs published
by the Central Bureau of Statistics far more informative than the rather pityful LISREL
models fitted by the social scientists. The IQ debate is another example. It has somewhat
died down now, but the last summaries published by the various opponents show that
they do not even agree (after 100 years of research) what the basic facts are.

Thus descriptive statistics, in various forms and of various degrees of sophistication, are
not only quite sufficient in many cases, they are all that we can responsibly do. It can be

~argued that the true purpose of any data analysis is providing generalizations and
predictions, and that a descriptive analysis does not show how to generalize. This is not
true. Any respectable tool gives information about its precision, i.e. about its stability
under various circumstances. The confidence intervals and significance tests in the output
of programs as LISREL or TETRAD are a very primitive and unconvincing sort of stability
information, because it only is relevant under hopelessly unrealistic circumstances. I have
argued carlier (De Leeuw, 1988) that if you want information about replication stability,
then you must replicate your experiment. Or you must wait until somebody else replicates
it. If it turns out that replications behave as statistics expects them to behave, then there
is no need to replicate further, because statistical models can take over the burden of
additional replications. But you cannot assume the usual statistical models for replication
stability if they are a priori highly unlikely, and if you are never going to test their
reasonableness in the first place. If you model falls apart if somebody replicates the
investigation, or if you decide that it is impossible to replicate the investigation anyway,
then replication stability is irrelevant and there is no need to worry about it. Building
models, identifying systems, making generalizations and inferences is not the task of the
statistician, but of the scientist. Hammers don't build houses, and books are useless until
somebody reads them.




15

References

Benzécri, J.P. (1980) Les Principes de 1'Analyse des Données. In Benzécri, J.P. et al.
(1983). Analyse des Données. Paris, Dunod.

De Leeuw, J. (1983), Models and Methods for the Analysis of Correlation Coefficients,
Journal of Econometrics, 22, 113-137.

De Leeuw, J. (1984), Models of Data, Kwantitatieve Mcthoden 5, 17-30.

De Leeuw, J. (1985), Review of Four Books on Causal Analysis, Psychometrika, 50, 371-
371.

De Leeuw, J. (1986), Individuele Verschillen en Ongelijkheid [Individual Differences and
Inequality]. In: J. Berting e.a. Sociale Ongelijkheid [Social Inequality]. Muiderberg,
Countinho.

De Leeuw, J. & Mooijaart, A. (1987). Structurele Analyse van Covariantiematrixen
(Structural Analysis of Covariance Matrices). In Crombach, H, Vlek, C., Van der
Kamp, L. (eds), Boven de Psychologie Uit (Beyond Psychology), Lisse, Swets.

De Leeuw, J. (1988), Model selection in multinomial experiments. In Dijkstra, T. K. (ed),
On Model Uncertainty and its Statistical Implications, Berlin, Springer Verlag.

De Leeuw, J. (1988). Models and Techniques. Statistica Neerlandica, 42,

De Leeuw, J. (1988). Multivariate Analysis with Linearizable Regressions,
Psychometrika, in press.

De Leeuw, J. & Van Rijckevorsel, J. (1988). Beyond Homogeneity Analysis.In Van
Rijckevorsel, J. & De Leeuw, J., (eds), Progress in Component and Correspondence
Analysis. New York, Wiley.

Freedman, D.A. (1987), As Others See Us: A Case Study in Path Analysis (with
discussion). Jounal of Educational Statistics, 12, 101-223.

Glymour, C., Scheines, R., Spirtes, P, & Kelly, K. (1987). Discovering Causal Structure,
New York, Academic Press

Kalman, R.E. (1982a). Identification from Real Data. In Hazewinkel, M., & Rinnooy Kan,
A H.G., Current Developments in the Interface: Economics, Econometrics,
Mathematics. Dordrecht, Reidel.

Kalman, R.E. (1982b). System Identification from Noisy Data. In Bednarek, A.R., &
Cesari, L. (eds), Dynamical Systems II, New York, Academic Press.

Kalman, R.E. (1983). Identifiability and Modeling in Econometrics. In Krishnaiah, P.R.
(ed), Developments in Statistics IV. New York, Academic Press.

Ljung, L (1987). System Identification. Theory for the User. Englewood Cliffs, Prentice
Hall.

Malinowski, E. R. & Howery, D .G. (1980) Factor Analysis in Chemistry. New York,
Wiley.

Newton, 1. (1687), Principia Mathematica, 1687. Quotation from p. 547 of Motte's
translation revised by Cajori. University of California Press, 1962.

Saaty, T.L., & Alexander, J.M. (1981). Thinking with Models. Oxford, Pergamon Press.

Spirtes, P., Scheines, R., & Glymour, C. (1988). Simulation Studies of the Reliability of
Computer Aides Model Specification Using the TETRAD, EQS, and LISREL
programs. Report CMU-LCL-88-3. Laboratory of Computational Linguistics,
Carnegie Mellon University.

Suppe, F. (1977). The Structure of Scientific Theories. Urbana, University of Illinois
Press.



16

Synge, J.L. (1960). Classical Dynamics. In Fliigge, S. (ed), Encyclopedia of Physics, vol
IIl/1, Berlin, Springer.

Truesdell, C., & Toupin, R. (1960). The Classical Field Theories. In Fliigge, S. (ed),
Encyclopedia of Physics, vol IIl/1, Berlin, Springer.

Van Rijckevorsel, J. & De Leeuw, J. (eds, 1988). Progress in Component and
Correspondence Analysis. New York, Wiley.

Willems, J.C. (1979). System Theoretic Models for the Analysis of Physical Systems.
Richerche di Automatica, 10, 71-106.

Willems, J.C. (1986). From Time Series to Linear System. Part I: Finite Dimensional
Linear Time Invariant Systems. Part 1I: Exact Modelling. Part III: Approximate
Modelling. Automatica, 22, 561-580, 675-694, 23, 87-115.

Willems, J.C. (1987). Models for Dynamics. Department of Mathematics and Computing
Science, University of Groningen.

Wolfle, D. (1940). Factor Analysis to 1940. Psychometric Monographs, no 3, Chicago,
University of Chicago Press.




17

T 1.14
) 1E-4
catholic
MODEL BOX DATA BOX

Figure 1: The Scientist between Data and Mod




Prior Knowledge

f

Experiment
design

y

Data

Choose el

Model Set
Choose
Criterion [——
of Fit

# J,

Calculate Model

Y

Validate Model

‘ OK: use it !

Not OK:

Revise

Figure 2: The System Identification Loop. From Ljung (1987, p. 9).




'Rl

19

%(8)

Figure 3: A covariance model in which projection increases stability




