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Introduction

Consider the following empirical situation. For a number of objects or individuals, indexed by i =
1, ... , n, we observe two vector variables x; and y,. The basic idea behind this partitioning of the
variables into two sets is that we have the idea that the y, are influenced by the x,, i.e. that the x;
are the causes of the y,. The x; can be thought of as input variables, the y, as output variables. In
econometrics the x; are called exogenous, and the y; endogenous. In psychometrics, and in variou
other areas of applied statistics, the x; are called independent variables, and the y,; are
dependent. Thus we have two sets of variables, and the two sets play a different and

asymmetric role in our thinking.

In multivariate analysis the individuals are often considered to be replications of the same basic
structure. The data can be considered to be a random sample from some well-defined population.
Another way of saying this is that there is no causal connection between variables with different
indices. Thus x, influences y,, X, influences y,, and so on, but there is no influence of x, on x, or
on y,. This is called the independence assumption. Another important aspect of the usual models
in this class is stationarity. This means that the influence of x, of y, is supposed to be the same
as that of x, on y,, and so on. Models for which the independence assumption is violated are be

discussed in another publication (Bijleveld and De Leeuw, in press).

Independent and stationary models are at the basis of regression analysis, and of linear models
in general. More recently a slightly more complicated class of these models has been discussed,
which goes under various names. They are called reduced rank regression models, redundancy
analysis models, growth curve models, MIMIC models, or errors-in-variables models. Their
basic common idea is that the influence of x on y is mediated by unobserved latent variables z,
with x determining z, and z determining y. In general the dimensionality of the z is lower than
that of the x, and in this sense z filters the relationships between the two sets of variables. We
call the space of the z the latent space, and we use p for its dimensionality. For various versions

and applications of reduced rank regression we refer to Anderson (1951, 1984), Izenman (1965),
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Keller and Wansbeek (1983), Jgreskog and Goldberger (1976). The basic properties of such

models will be discussed in general terms below.

In addition we consider techniques for fitting models of this kind. Some general considerations
must be kept in mind here. In fitting models to data there usually are three kinds of errors that
we have to take into account. The first error is approximation error. This occurs because models
are never true, and are at best approximations. The second kind of error is replication error or
sampling error, this is the kind of error studied in statistics. It occurs because we sample from a
population. It is often expedient also to discuss measurement error, which occurs because of
limited precision or other disturbing circumstances. In survey research the measurement errors
are often discussed as non-sampling errors. Observe that we assume that even if there are no
sampling errors and no measurement errors, then there will still be approximation errors. This is
because models are not exactly true, by definition. For further discussion of these points we refer
to Guttman (1985), Kalman (1983), De Leeuw (1984, 1988a).

Regression with latent variables

In the usual regression situation we study the conditional distribution of y given x. This
conditional distribution is studied through conditional expectations and/or conditional variances.
Suppose p(ylx) is this conditional distribution. We use a somewhat informal notation here, which
can either refer to discrete probability distribution or to densities. The purpose of statistical
analysis in this context is to see if we can describe this conditional distribution in simple terms.
Often this is done by assuming that the conditional expectations are linear in x, and the
variances do not depend on x (i.e. are homoscedastic). But this type of simplification of the

models is perhaps a little bit drastic in many circumstances.

Another type of simplification can be introduced by using concepts borrowed from factor analysis.
In factor analysis we observe variables y,,...,y_, and these variables are correlated. We assume
that there exist unobserved variables or factors z,,...,z, which 'explain’ the association between
the observed variables, in the sense that the observed variables are independent given the

factors. In our informal notation we assume that
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p(yl’---’ymlz) = n;n=1 P(yj;z), (1)

and thus

P(Yir¥u) = | T P(y)12) P(2)dz. 2)

Now let us translate this to the regression context. The first possibility is to assume that there
are p latent variables z,...,z, such that y and x are independent given z. In formula this is

p(x,ylz) = p(xIz)p(ylz), or, equivalently, p(ylx,z) = p(ylz). This means that

p(yx) = | p(ylz) p(zix)dz. (3)

But the conditional independence assumption is also equivalent to p(xly,z) = p(xlz), and
consequently the role played by x and y is perfectly symmetric. This is not precisely what we had
in mind. We get the necessary asymmetry by assuming in addition that (1) is true. Then (3)

becomes

p(ylx) = [ TI™, p(y|lz) p(zlx)dz. (4)

Model (4) is called a reduced rank regression model, because z has fewer components than x. If
the regressions of y on z and of z on x are linear, the name becomes even more clear. Suppose
E(ylz) = Hz and E(zlx) = G'x then

E(ylx) = J Hz p(zlx)dz = HG'x. (5)
Thus the regression coefficients B satisfy B = HG', i.e. B is of reduced rank p. Observe that (5)

is also true for the more general model (3). If the conditional dispersions satisfy V(ylz) = ® and
V(zlx) = Q, then



Regression with latent variables 5

E(yy'lx) = J (® + Hzz'H') p(zix)dz = ©® + H(Q + G'xx'G)H/, (6)
and thus

V(ylx) = ©® + HQH'". 7
Again (7) is true for model (3). For model (4) in addition we know that © is diagonal.

If y given z and z given x are both multivariate normal, then we get from (3) and (7) for the

conditional density p(ylx) of y given x

Qr) 2|19 12Q |12 J exp(- 3[(y - H2)'®'(y - Hz) + (z - G'x))Q'(z - G'x)]} dz =
= 2r)™20 + HQH'I'” exp{- 1(y - HG'x)'(® + HQH')'(y - HG'))}. (8)
Again model (4) is the special case in which © is diagonal.

Thus we have introduced the basic model in various levels of generality. In the nonparametric
case we have models (3) and (4), with (4) the restricted asymmetric model. In the case of linear
regression we have (5), and homoscedasticity adds (6). In the strongest version of the model,
which assumes multivariate normality, we have model (8). This again has a version with
diagonal ® and one with full ®. A graph picturing the reduced rank regression model is given in

Figure 1. It shows clearly how the effect of x on y is mediated by, or filtered by, z.
INSERT FIGURE 1 ABOUT HERE

We can also introduce (8) in a slightly different way, which connects our approach with
multilevel analysis (Mason, Wong, and Entwisle, 1983, Aitkin and Longford, 1985, Goldstein,
1987, Goldstein and McDonald, 1988). Multilevel analysis is also known as random coefficient

regression or empirical Bayes regression (see De Leeuw and Kreft, 1986, for references).
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Suppose y = HB + €, with & normal with mean zero and dispersion ©, while B = G'x + 8, with &
again normal, independent of €, with mean zero and covariance Q. It follows that y = HG'x + H3
+ g, which is exactly identical to (8). The regression coefficients B now play the role of the latent
variables z. This shows that the random coefficient regression models can be interpreted as
reduced rank regression models, or as regression models with latent variables. In this situation
both G and H are usually known matrices, while it is commonly assumed that © is the scalar

matrix ¢21.

Maximum likelihood estimation

If we assume multivariate normality, then we can use the result (8) to compute maximum

likelihood estimates. The negative log likelihood is, except for irrelevant constants, equal to

L(GH,0,Q)=

=Indet X +n'tr T(Y-XGH)'(Y - XGH), 9%
with

T =HQH' +O. (10)

Compare Jgreskog and Goldberger (1971). As a general point (Keller and Wansbeek, 1983, De
Leeuw and Kreft, 1986) it is quite possible to interprete loss function (9) without actually
referring back to the multivariate normal distribution or the principle of maximum likelihood. If X =
6’1, then (9) reduces to the ordinary least squares loss function tr (Y - XGH")'(Y - XGH), and in
general weighted least squares can still be used if T is proportional to any known matrix. But if
we do not want to make that assumption, we have to estimate X as well as the mean structure
Y = XGH'. Loss function (9) measure the distance between T and S =n'(Y - XGH)'(Y - XGH)),
in fact it defines an eminently reasonable metric on the cone of positive definite matrices. Thus,
by minimizing (9) over its parameters, we obtain two goals at the same time. In the first place

the dispersion of the residuals S is made as small as possible, and in the second place S and z
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are made as close as possible. This generalizes the least squares idea, which merely

concentrates on the dispersion of the residuals.

Minimizing (9) can be quite complicated in general, but there are some special cases in which
the problem simplifies. If ® is unrestricted, then X is unrestricted as well. It follows that the

partial minimum of (9) is, except for constants,
L(G,H,*,*) = In det (Y-XGH")'(Y - XGH), (11)
and this is minimized, under identification conditions G'X'XG =1, by solving
X'YH = X'XGL, (12a)
Y'Y)'Y'XG =H. (12b)
But (12) defines canonical correlation analysis (Bagozzi et al., 1981, Tso, 1981), which is
consequently a special case of our general framework. Observe, however, that the role of X and
Y is (12) is perfectly symmetric, which is because we have analyzed a model of form (3) and not

of form (4). Thus canonical correlation analysis is not really what we want.

If T is known (or proportional to a known matrix) then minimizing (9) over G and H , again

requiring G'’X'XG = I, amounts to solving the problem
X'YZ'H = X'XGQ, (13a)
Y'XG=H. (13b)

which is a weighted version of redundancy analysis (Davies and Tso, 1982). De Leeuw,
Mooijaart, and Van der Leeden (1985) discuss the case in which Q = 0 and © is restrricted to be
diagonal, or simplex-like, or of factor analytic form, or whatever. The important point here is that

if Q = 0, then the problem of estimating Z and the problem of estimating G and H separate, and
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we can consequently use alternating maximum likelihood or AML methods. We use this name
because it describes the structure of the algorithm: we alternate iteratively over adjusting (G,H)
and ¥, and because it emphasizes the analogy with the alternating least squares techniques usec

in the nonlinear multivariate analysis methods of Gifi (in press).

The step of estimating I, under restrictions and with G and H currently considered known, is
alternated with the step of estimating G and H with T currently known. The first step fits a
covariance structure model to the current dispersion matrix of the residuals, the second step
solves the weighted redundancy problem (13). This does not work if Q # 0, because in that case
H occurs in both subproblems. If H is known, as in the Pothoff-Roy (1964) growth curve models
or the random coefficient regression problems, this is no problem, and alternating maximum
likelihood can still be used. But if H is (partially) unknown the subproblems are confounded, and

other more complicated optimization methods must be used.

The EM algorithm

It seems as if using maximum likelihood methods does not give estimates of the scores on the
latent variables, but this is only apparently so. In the first place we can simple set Z = XG, and
use this as the estimate of the scores. In the second place we can use (8) to derive a different
form of the loglikelihood function, which is also very useful for computational purposes. This
amounts to a new derivation of the EM-algorithm (Dempster, Laird, and Rubin, 1973), which has
been applied earlier in this context by Chen (1981). We present the relevant argument here,
because the EM-algorithm is often discussed in purely statistical terms, which makes its simple
computational structure somewhat mysterious. Our derivation uses the concavity of the
logarithm (Jensen's inequality), together with the general idea of majorizatiori, which is a very
useful methodology to extend the scope of linear optimization techniques (compare De Leeuw,
1988b). A careful observer will note that we tried, in the previous paragraph, to deemphasize the
statistical interpretation of the likelihood function, and its role in so-called inference. In this
paragraph we try to deemphasize the statistical interpretation of the EM algorithm, by
reformulating in perfectly general algorithmic terms. The reason for this shift of emphasis is that

we think that fitting mean structures and covariances structures to observed data in this way
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makes geometrical and computational sense, even if the assumption of multivariate normality

does not.

Ignoring irrelevant constants we find, using ©,(G,H,0,Q) for the density (8) at (X,,¥:2),
=3 In[ n(GHBO,Q)dz = inIn det(®) +in In det(Q) +
- In [ exp{-3((y; - HZ)®'\(y; - Hz) + (7, - Gx)'Q'(z, - Gx)I}dz.  (14)

i=]

Suppose we use underlining for current, tentative estimates of the parameters, and (G .H.0,Q)

for the density with these current estimates. Then, by concavity of the logarithm,

In [ ©(G,H,0,Q) dz, - In [n(G,H.0,Q) dz.=
> [[ n(GH8.Q) In {n(GH,0,Q)/rGHO.Q) dz}/[ [ ©(GHO,Q) dz]. (15)
Now let n,(G.H.8,Q) = n(G,H.0.9)/[ | n(G,H.8,Q) dz]. Then

In [ n(GH,0,Q)dz>In [ 1(GHO,Q) dz +

| n(G.H.8.Q) In n(G,H,0,Q) dz, - | N(GH.0.Q) Inn(G.HO,Q) dz.  (16)

We have equality in (16) if (G.H,0,Q) = (G,H,0,Q). In fact, because the logarithm is strictly

concave, this condition is actually necessary and sufficient for equality.
If we sum both sides of (16) over the observations we find an inequality of the form
L(GH06,2)2 (G H0.Q) +

+ {A(G,H.9,Q;GH,0,Q) - A(GH.0,2;,G.H0.Q)}. (17)
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Now suppose that we find improvements of (G,H,0,Q2) by maximizing A(G,H.9,Q:G,H,0,Q)
over (G,H,0,Q). This gives updates (G*,H*,0",Q"). By definition

A(GH,0,Q:G"H',0",Q") 2 A(G.H.0,.Q2:G.H.0.,Q), (18)
and thus, by (17),

L(G'\H',0",Q") 2 L (G.H.0,Q), (19)
with equality if and only if (G*,H',0*,Q") = (G,H,0,Q). This, together with the continuity of the
update mapping, proves convergence to a stationary point of the likelihood function (Zangwill,
1969).
It remains to show that maximizing A(G,H.9,Q;G,H,0,Q) is fairly simple. In the first place

observe that n,(G,H,0,Q) is the conditional density of z, given x; and y,. It is thus normal, with

mean vector of the form m, = Ax, + By, and dispersion W. Straightforward computation gives

A=(1-QHAH)G, (20a)
B=QHA", (20b)
W=0Q-QHAHQ, (20c)
with
A=HQH+©. 2n
Also

In ©,(G,H,0,Q) = -} In det(®) - 4, In det(Q) +
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- 3[(y; - Hz)'®\(y; - Hz) + (z, - G'x)'Q(z, - G'x)]. (22)

Thus, taking conditional expectations E with respect to z,, for given x, and y,, at the current
parameter values (G,H,0,Q),

-2A(G,H,0.Q;G,H,0,Q) = In det(O) + In det(Q) +
+1r ©'E((y; - Hz)(y; - Hz)'} + £ @E{(z - GX)(z - Gx)'}. (23)

It is now straightforward, although somewhat tedious, to develop the algorithm from here by
summation over the observations, and by collecting terms. We use the conditional means m, and

the conditional dispersions W.

We find that we now can separate the estimation of G and H from that of ® and £, even in the
more complicated models, at the price of using approximations which will undoubtedly slow down
the convergence. In order to find a new @, for temporarily fixed G and H, we have to minimize In
det(®) + tr ©'S, where

S =HWH'+n" 2, (y; - Hm)(y, - Hm,)', (24a)
and in order to find a new Q we have to minimize In det(Q) + tr Q'T, where

T=W+n'%, m - Gx)(m - G'x)' (24b)
This will be simple if the restrictions on Q and © are simple, but in any case we know how to
solve subproblems like these. In order to find the optimal G and H for temporarily fixed Q and ©
we have to minimize tr ©'S and tr Q'T, which are linear regression problems.
The structure of the algorithm is now clear. We start, for current (G,H,9,Q), to compute the

conditional means and variances m, and W using (20) and (21). Then we compute S and T by

using (24). Construct the auxilary loss function A, = In det(®) + tr 'S, and minimize this over
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© and H (by AML). Also construct the auxilary A, = In det(Q) + tr Q'T, and minimize over Q
and G (by AML). It is not necessary to actually carry out the minimizations of the auxilaries
completely, in fact this would not be possible as a subset. Usually we only carry out one AML
cycle for each auxilary, and then proceed to use the new values as substitutes for (G.H, ,Q)_ in
a new majorization. In the random regression case, in which G and H are known, this reduces to
the EM algorithm used, for instance, by Mason, Anderson, and Hayat (1988), and by
Raudenbusch, Bryk, Seltzer, and Congdon (1988).

Optimal scaling

This algorithm, complicated as it is, does not yet exhaust the scope of alternating maximum
likelihood in this conbtext. By a conceptually very easy extension of these general principles we
now incorporate transformation of the variables, a.k.a oprimal scaling . This uses basically the
same principles as the familiar Box-Cox (1964) approach in regression analysis. In the context of
regression analysis, path analysis, and structural equations modeling these procedures have
been proposed by De Leeuw (1986), Van Wijk (1987), Mooijaart, Meyerink, and De Leeuw
(1988).

The assumption we now make is that we have a reduced rank regression model exactly like the
one above, except that what used to be observed variables originally now become latent
variables as well. We now write 11 where we first wrote y and & where we wrote x. Thus the

general model becomes

p(MIE) = [ TI™, p(n,lz) p(zI&)dz. (25)

This is not enough, of course, because we have to introduce observed variables at some point.
The observed variables, which are still written as x and vy, are in a one-one correspondence with

€ and 1, and we assume

P(x;E, M, 2) = p(x/E), (26a)
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p(yj'lé’ n,z) = p(yjléj) (26b)

This means that x; only depends on &, and y; only depends on 1. From this we find

p(x.y) = [[ TI7, p(ym)) TI™, p(x/)€,) pMIE)p(E) dEdn. 27)

Equation (27) is the general formulation of the model, which does not assume linearity,
homoscedasticity, or normality. If we want to make this much more specific we assume
multivariate normality of all latent variables, as before. We also assume ¢,(y) =m; and Vi(x;) =
€, with ¢, and y; continuously differentiable and increasing, but otherwise unknown. Collect
them into vector functions @ and '¥'. Now suppose F is the cdf of x and y, and U is the cdf of £

and n. Then
F(a,b) = prob(x < a, y < b) = prob(¥(x) < ¥(a), ®(y) < (b)) =
prob(§ < ¥(a), n < @(b)) = U(¥(a), D(b)). (28)
Thus we find for the density
0°F(a,b) = 0*U(¥(a), ®(b))0¥(a)od(b). (29)

It follows that the log likelihood for observation i is given by our previous log likelihood (14)
evaluated at (®(y,),'¥'(x,),z;), minus one half times the logarithm of the Jacobians In det(d®d) + In
det(d'¥). We can now maximize the likelihood over the usual parameters (G,H,0,Q), as well as
over the transformations @ and ¥. Again the problem separates nicely, in the sense for given
transformations we are in back in the situation of the previous sections, and we can use the
AML methods developed there.

Computing optimal transformations for given (G,H,0,Q) is somewhat less simple. In fact we
deal with a semi-nonparametric: problem here, because the space of all possible transformations

has infinite dimensionality. Thus we have to use finite dimensional approximations in this case.
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in the literature mentioned above we use monotone B-splines, which are very similar to the M-
splines recently discussed by Ramsay (1988). The monotone B-splines are positive linear
combinations of a given number of finite number of basic splines, with the coefficients of the
linear combinations chosen to be increasing. The same type of representation is true for the
derivatives. It can be shown that the problem of minimizing the negative log likelihood over the
coefficients of the B-spline representation is a convex minimization problem (with simple linear
inequality constraints), and efficient Newton-Raphson type methods are available to solve such

problems. This makes it quite feasible to solve the corresponding AML substep efficiently.

Discussion

This paper has various contributions. We offer an algorithmic interpretation and reformulation of
the multinormal likelihood function and the EM-algorithm, and we discuss a class of models
which have canonical correlation analysis, redundancy analysis, reduced rank regression
analysis, and multilevel analysis as special cases. The alternating least squares algorithms of
the Gifi system, and of the PLS approach by Wold, are replaced by very similar (although slightly
more complicated) alternating maximum likelihood methods. The alternating maximum likelihood
methods, which alternate rescaling of the variables with optimization over the regression
parameters, seem to be a promising alternative to the techniques based on least squares, in
particular because the marginalization implicit in the likelihood function does not lead to some of

the problems with incidental parameters that occur in the PLS/ALS approach.
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