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1 Multivariables and Profiles

1.1 Variables

A wvariable 1s a mapping ¢ defined on a domain €

with values in a target V.

Elements of the domain are called individuals or
objects, elements of the target are called

categories or values.

Targets can be sets of real numbers, sets of

natural numbers, ordered sets, or arbitrary sets.

If a variable corresponds with actual data (and
not with a “model”) then the domain

Q ={wy, - ,wy} is finite. This makes the image
#(§2) C V finite as well.

In fact, for actual data we can suppose without

loss of generality that V is finite.




Some examples of variables:

¢ : Individuals

¢ : Surveyees

¢ : Students

¢ : Timepoints

¢ : Time x Person

o:TxXxYxZ

1Q scores

Agree with Thing
Religion

Height Mrs. Entity
Height

Aftershock

1.2 Multivariables

A multivariable is a finite sequence
® ={¢y, -+, ¢dm} of variables with a common
domain €2 and with targets Vy,---,V,,.

Let Vo = V1 ® -+ ® V,,. Then a multivariable
on {2 can also be interpreted as a variable on 2

with target V.
An element of Vg =V @ --- @ V,, 1s called a

profile. Each profile is a sequence of m categories,
with category j coming from variable j. Thus a

multivariable maps the objects or individuals into
the set of profiles. Or

AHVHQHV<®.

Often card{®(2)} is small compared to
card{V g}, i.e. many of the profiles are unused.




Here is the GALO example, Groningen 1959.

1. Gender

(a)
(k)
1Q

Boys
Girls

values between 60 and 144

Teachers Advice

(a)
(b)
(c)
()
(e)
(f)
(g)

No further education
Extended primary education
Manual labour education
Agricultural education
General Education
Secondary school for girls

Pre-university

Fathers profession

(a)
(k)
(c)
(d)
(e)
()

Unskilled labour
Schooled labour
Lower white collar
Shopkeepers
Middle white collar

Professional

School

numbers 1-37

1.3 Coding

There are two essentially different ways to code

profiles.
Suppose V; has k; elements. Define g;¢ to be a

binary vector with k; elements given by

(o) 1 ifl=v
gty =
’ 0 otherwise

A profile < 44, {,, > can now be coded as a

vector gg = g1¢, D -+ D gme,, of length MM&HH k;.
Or, alternatively, as the ky x --- x k,, array
9o = 916, @+ & Gty -

The vector gg has m elements equal to one, one
for each variable. The array g has exactly one
element equal to one, indicating where the profile

is in the m-dimensional grid.




1.4 Profile Frequencies

In the Gifi system for multivariate analysis the
basic coding is the additive coding ¢4 of the
profiles. In this course we will use the

multiplicative coding ¢g.

There are :,W:HH k; possible profiles, indexed by

1 € Z. Each profile occurs with frequency n; in the
data, Y. 7 ni = n.

The profile frequencies of a multivariable are a
mapping of Vg into the natural numbers
{0,1,2,---}. The interpretation is that the
mapping assigns frequencies to each of the

profiles.

Observe that we can recover the variables from
the profile frequencies if, and only if, the order of

the observations does not matter.

We use n; for the frequency of profile :. Often we
also use the profile relative frequencies given by
A7

pi=—.

n

The relative frequencies are in the simplex P,
which is the set of all vectors with :,W:HH k;

non-negative elements adding up to one.

In order to study stability and related statistical
problems, we also have to define the related
quantities m; and p; These quantities do not refer

to the data, but to the model. We shall discuss

them in a separate secion.




Here is a tiny example

profile frequencies.

of a multivariable and its

object

religion height in feet

gender

Jjohn
Jjan
joe
Jjim
Jjack
jin
Jjebb

Jjane

buddhist
mormon
mormon
buddhist
buddhist
buddhist

mormon

mormon

[5 S S e N e T =Y

male
female
male
male
male
female
male

female

religion

height in feet

buddhist
buddhist
buddhist
buddhist
mormon
mormon

mormon

mormon

[S 3 " S S N S

o B N = O W HE OB

2 Models

2.1 Why Models ?

A model M is a subset of space P. It can consist
of s single point (simple model) or of the whole

space (saturated model).

Models are useful, because they
e summarize prior knowledge:;
provide a language for discourse;
reduce data volume;
e enhance stability.
Models are harmful, because they
e incorporate prejudices and idols;
e introduce bias.

Models are used to filter and summarize observed

arrays.




2.2 Fixed and Random Variables

In many cases models do not only involve
specifying a subset of array space, but they also

specify something of the form
Data = Structure 4+ Deviation.

What is this “deviation” 7 It is something that
will be different if the experiment is replicated.
This does not imply that the experiment actually
can or will be replicated, on the contrary, we rely
more heavily on the model when actual

replication is difficult or impossible.

And what is the “structure” 7 This is also known
als the truth. It is the part of the outcome that
stays the same over replications. Again, this is a
theoretical construct, which can never be verified
of falsified in any strict sense. Without it,
however, the whole notion of stability and

cumulative science does not make much sense.

The standard model for variability around a true
value uses the notion of a random variable. It is
important to realize that random variables do not
model data, they model a hypothetical sequence
of experiments, sometimes known as a replication

framework.

The truth corresponds with the expected value of
the random variable, and with the statistical
notion of unbiasedness. The deviations correpond
with the variance of the random variable, and
with the statistical notion of standard error (or

confidence interval).

Now define p, as the replication framework for p,

i.e. it is the variation in the profile frequencies if
we replicate the experiment a large number of
times, and define 7 = E(p ) as the Truth.

—n




We can also distinguish between fixed variables
(also called factors) and random variables. The
fixed factors remain the same in our hypothetical
sequence of experiments. They do not have error,
they are there as they are by design. The random
variables have an error component, and vary over

replications.

Random variation introduces a probability
distribution over the profiles. Since we assume
discreteness, the notion of replications actually
generates a product multinomial structure. Each
profile ¢ consist of a part 77 corresponding with
the fixed variables and a part 25 corresponding
with the random variables. Thus

7(1) = w(i1,12) = w(i2]¢1). Each value of 71 defines

a multinomial distribution over the values of 1.

2.3 Stability of Profile Frequencies

We have

prob(p, = pn) = [[ Cix) J] w(ialin) =1

11 €1, 12€7,

In the same way

Vi(p,(0)) = n(a)r(iz]in)(1 = w(izi)),

.;
and, for ¢ # ¢/,

Clp,(0),p, (") =

(i) (isli)w (b)) i iy =1

0 otherwise




2.5 Distance between Profile
2.4 Fitting Models Frequencies

We project the observed array on the model. Or, There are many different ways to define distance
to put it differently, we find the closest point on between conforming vectors of frequencies. One

the model. that is particulary natural is based on wesghted

least squares.

If p(7) is the observed vector of frequencies, and
7(2) is the expected vector (given the model),
then

The weights w(7) should be chosen in some
Observe that in this case the model is not “true”, “reasonable” way, to reflect the stability of the

and observe that projection improves stability observed frequencies.

(although it introduces bias). For the time being we suppose there are only

random variables.




We now that the dispersion of the p, in matrix
form is equal to V = II — 7w’ with II the diagonal
matrix with the 7(7) on the diagonal. This matrix
is singular, because its rows and columns add up

to zero. For the generalized inverse we find

1 1
[V 4+ Ze ] =V 4+ Zee,
n n

and thus

Vip—m)=T"(p ).
This suggests
Axs(p, ) = n(p—m)'VF(p—7) =

or, in scalar notation,

Here is another one:

we see that

log —=

(4)

p(i)

which shows

Apyr(p,m) ~ Axs(p,m).




3 Mixture Models for

Profile Frequencies

Another popular and elegant one:

Anp(p, ) 4> (Vi) = /p(i)* =
ez Mixture models assume that each vectur of
frequencies is a mixture of “simple” vectors. Thus

we write

m(s)m(i]s)ds,

—o0
and we assume the 7(i|s) are “simple”, in some
sense. The 7(s) are the mizing proportions. It is
as if we really have a two-dimensional table

7(2,s), for which we only observe the marginal

(7).




3.1 The Notion of State

States, or state variables, are also known as latent
variables. The general idea is that the state
characterizes the system, in the sense that we
knew the most important aspects of the system if
we know the state. Unfortunately, the state
cannot be measured directly, but it has to be

inferred.

Some of the major examples show more clearly

what this means. If we know the intelligence, the

IQ tests do not really provide additional

information. If we know the true value of a
quantity, then the repeated measurements merely
show what the error of measurement is. If we
know the state of a dynamic system, then there is
no need to enquire into its past, because the state

has all the information necessary for prediction.

Many people question the notion of latent
variables. We silence them by quoting a Nobel

Price laureate.

There 1s now a school of mathematical
Physicists which objects to the
introduction of ideas which do not relate
to things which can actually be observed
and measured. --- Ihold that if the
introduction of a quantity promotes
clearness of thought, then even if at the
moment we have no means of determining
it with precision, its introduction is not
only legitimate but desirable. The
immeasurable of to-day may be the

measurable of to-morrow.

J.J. Thomson, January 29, 1950




3.2 The EM algorithm

Let us study projecting on the model, using
Aprr(p, 7). This is known as mazimum likelihood

estimation, because it amounts to maximizing the

log-likelihood

> n(i)logw(i) =Y n(i)log y_ m(s)(ils).

€7 1€T
Suppose 7(s) and 7(i|s) are our current best

estimates. Then

which shows

log 7 (1)

T

> #(sli)log 7(i, 5) > #(sli)log 7(i, 5).

s=1 s=1

The only term on the right hand side that
depends on 7(i,s) is Y. _, 7(s|i)log 7(i,s). By
maximizing this term, we maximize the
right-hand-side, and this maximum will be larger
than 7(s).

Because of the inequality on the previous page,
we see that this implies that we increase 7(¢) as

well. Thus, in each step, we maximize

> ni Y #(sli)log w(s)m(i]s)

1€T s=1

n> " pls)log w(s)

+ ny B(s) Y plils)logw(i]s).

1€7

with p(¢,s) = p;7(s|i), ete. This is usually much
simpler than the original problem, but we have to

solve it a large number of times.




4 Factor Analysis

We now give a brief and unconventional
introduction to factor analysis. In our
presentation of the model, it covers latent class
analysis, Rasch models, and various other special
cases as well. In fact, the important thing to
understand is that basically these are all the same

model.

Factor analysis 1s a cross-sectional state space

model without input variables.

This point of view is far from new. It was
discussed with varying degree of generality in the
forties by Lazarsfeld and Guttman, in the fifties
by Anderson and Koopmans, and in the sixties

and seventies by McDonald, Lord, and others.

Y1

Y2

Y3




The basic assumption for factor analysis is local
or conditional independence. Given the value of
the state variable, the observed variables are

independent. To use some canonical examples:

e Given a person’s intelligence, the scores on

various intelligence tests are independent;

e Given a person’s ability, his results on the

items of a test are independent.

This is just another way of saying that
intelligence tests only have intelligence in
common, and test items only have the fact that

they measure ability in common.

Thus the “simplicity” in the factor analysis model
is independence. This is not strictly necessary.
We can also have a factor analysis in which

“simple” means no second-order interactions.

4.1 Latent Class Analysis

Suppose there is only a finite number of states.
For notational simplicity, suppose there are three
observed variables, i.e. our array is
three-dimensional with elements p;;;. The model

18
T
. |M A __B
ﬁ-sbk — ﬁ-.mﬁ-s_.mﬁ-b_.mﬁ-\ﬂ_m.
s=1

The EM algorithm is simply
T Ds
Ti|s Nws_m
Ty|s wa_m
Tk|s Nww_m

This is a simple as it gets. We do iterative

proportional fitting on the augmented array.




4.2 Latent Trait Analysis

Suppose the state is a single continuous variable
such as intelligence, or ability), and the (three)
variables are all binary (such as correct-false

items). Then, for profile < 1,1,1 > for example,

+oc
7(111) = \ m(s)m1(s)me(s)ms(s)ds,

—
where 71 (s) is short for the probability of a
correct response on variable 1 given ability s. The

function 7;(s) is called the trace-line of item j.

More generally, we can write
T(Yit,  Yim) =

+ oo m
[ T e 1= my(sp!-sas.

— 0

What can we say about the EM algorithm in this
case 7 Well, in the first place we need to
distinguish some cases. If 7(s) is not further
specified, and estimated, then we do
semaparametric mazimum marginal likelthood
estimation. We call it semiparametric, because
often the trace lines will have a prescribed
parametric form, such as
1
1+ exp{—(s—p;)}’
1
T T eoxp{—=h)

g

We can also consider the nonparametric situation
in which neither the functional form of the =(s),
nor that of the 7;(s) is specified (except for
monotonicity of the 7;(s)). This actually brings

us back to latent class analysis.




For the general latent trait model

log 7(ils) = MuwiomT|C TE%TQ%?

mi(s)

and thus

S Bils) log n(is) =

1€7

s)logmj(s) 4+ (1 = uj(s))log{1 —7;(s)},

= 5ils)yij-

€7
The EM algorithms sets 7(s) equal to p(s), and
sets 7;(s) equal to a monotonic version of u;(s).
Because of the monotone regression, this creates
step functions as solutions. The problem becomes
slightly more complicated if we also require that

the trace lines do not cross.

4.3 Linear Factor Analysis

Suppose we have

m

i?:.ésvn\|8 E (yjls)ds

and the regressions of the observed variables on
the state variables are linear and homoscedastic,

1.e.

/
M Qj5hpSh,
h=1

5 f
OAW m& HMUMU ub@am&bml_l%uk w
h=1 ”

This is the famous Thurstone Multiple Factor
Analysis Model, with f = 1 the special Spearman

case.




The factor analysis model with a continuous state
space, and a “continuous” observed space is not
too different from the laten class model. In
principle the same EM algorithm could be used.
Unfortunately if the variables are “continuous”
the profiles have low frequencies (usually either
zero or one), and there are too many parameters
for stable estimation. Thus we must use a
parametric model, which assume for instance that

7(s) and/or 7(y;|s) are normal. But then

o2

m ¥ )
M ) _ 41 O3S
,\HH J

and thus we see that the EM algorithm is based

on the simple result

— 0

+o0 m
Iw\ 7(s)logm(y|s) = Muyom Qw +
=1

LE (y; — i, ajnsn)®)

4.4 Ordinal and Nominal Variables

We see that factor analysis models are easy to
build for both binary outcomes and numerical
outcomes. They are slightly more involved for
ordinal and nominal outcomes. There are two

basic machanisms to make the extensions.

The main trick is to study, instead of the m
variables Y,,oce.y, aset of m pairs of variables
AWH“EY e AWSQF:V. The y, are observed, the n,
are again latent or in state space.

We now need to connect the members of the pair.
The first possibility is to assume a deterministic
relationship Yy, = N&ASY where F} is completely
or partially known. The second possibility is to
assume that Y, only depends on n; but that the

connection is probabilistic.




Three examples of the deterministic approach.

The first is the Box-Cox method. We set

U

Fip =4 >
log(n) ifA=0

The second example sets

if ag < <ayq
if a; <n < as

k me;wIHAJMO;W

And finally we can set F(n,a, 3) equal to a
(monotone) spline with knots @ and B-spline
coefficients . This is all meant for ordinal or even

“continuous” variables.

We give a single example of the probabilistic
approach. Suppose y is discrete, and has values

1,---, k. Then we can set

exp{ag + B}
prob(y = {lln =n) = — “
MU@HH @NHUAHQ@ |_| Qedw

and, of course,
prob(y) =

+oc
\ prob(y|n)prob(n)dy =

— 0

+o0 m
\ prob(y) T prob(y; n;)di-

— 0

J=1




5 Input and Output

5.1 Regression

In factor analysis (and the related techniques we
discussed above) all observed variables enter
symmetrically into the model. They all play the
same role. The state variable is different (it is

“causally prior”) but it is not observed.

In input-output models, also known as regression
models, the situation is more or less reversed.
There is observable input and observable output,

or independent and dependent variables.

In its simplest form the model is given in the
following figure, but since this is not a state space
or latent variable model, we shall not discuss it in
detail.

1

1y

x3

37




5.2 Fixed and Random Predictors

Observe that a distinction we made earlier
becomes relevant here. Do we consider the input
as fixed or as random 7 This depends entirely on
what we consider to be a replication of the
experiment. If a replication means identical input
but different output (as in experimental design)
the the input is fixed, if a replication will give
different output as well as input (observational

study) then input is random.

From the modeling point of view we often model

n(x,y) as w(y|z)r(x) and of course in w(y|x) we

have fixed z, at least formally.

5.3 The MIMIC Model




6 Time in the Picture

6.1 The State Space Model

6.2 AR and MA

6.3 Using EM

6.4 The Kalman Filter

6.5 Event Histories and Point
Processes




7 We Go Into Space
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