JACKKNIFING IN XLISP-STAT

JAN DE LEEUW

ABSTRACT. It is comparatively easy to write functions in Xlisp-Stat that
perform the usual Jackknife computations in any specific problem. It suffices
to put a loop around the function we are studying, and to collect the results
of the loop in an appropriate way. In this note we use the unique properties
of Lisp to automate this process.

CONTENTS

1. Introduction

2. The Jackknife 2
2.1. Delta Method
2.2. Approximating the Derivatives

3. Some Lisp 3
3.1. Symbols
3.2. Data Types and Function Types
3.3. Evaluation

4. The Jackknife Code 5
4.1. A Pseudovalue Closure
4.2. Pseudovalue Means and Dispersion
4.3. Tying it all together

References 8

1. INTRODUCTION

In Lisp it is common practice to write functions that return functions. See
Tierney [7], Section 3.6.3, and Graham [3], Chapters 5 and 15. Applications of
these techniques are, for instance, to produce memoized versions of functions, or
versions of function that keep a record of the number of times they are called (which
is useful in profiling).

In this paper we use Lisp, in particular Xlisp-Stat, to write functions implement-
ing the Jackknife. This makes it possible to illustrate some basic Lisp techniques,
and it produces a fairly routine way to associate a standard error and/or confidence
interval with any statistic computed in Xlisp-Stat.

Written while visiting the National Institute of Statistical Sciences, Research Triangle Park,
NC.

2 JAN DE LEEUW

2. THE JACKKNIFE

The Jackknife [6, 8] is a popular technique to compute bias corrections, standard
errors, and confidence intervals for a wide class of statistics. Currently, it seems to
be pushed to the background by Efron’s Bootstrap [2] and related resampling tech-
niques, but we feel that the simplicity and the straightforwardness of the Jackknife
continue to make it valuable.

Here is a brief outline of the Jackknife. We no attempt to be either comprehensive
or rigorous. The expansions and calculations we use can be made rigorous by using

results such as those of Hurt [5]. We underline random variables [4], and we use 2
for definitions.
2.1. Delta Method. Suppose ® is a possible vector-valued function of a sequence

of m—vectors of multinomial proportions p . Define = 2E (p,),and V(r) 2nV ()
We can write

(2.1) B(p) =¥(m) +n /2G(7)z, + op(n/?),
where
A OP
2.2 G(r) 2 2= ,
(22) ™25
and
(2.3) 2, &0 (p, —).

Under suitable regularity conditions we have the following expression for the dis-
persion of ®(p).

(2.4) nE(®(p,) — (m))(®(p,) — ®(m))' = G(m)V (m)G'(r) + o(1).

For bias correction we need an extra term in the expansion. For coordinate s
_ 1 _ _
(25) 6ulp,) = 6u(m) + 0 V2GUm)z, + 5n L Ho(m) 2 + 0p(n),

which implies, assuming sufficient smoothness, that
1
(2.6) nE (qﬁs(gn) — ¢s(m)) = 3 tr Hy(m)V (7) + o(1).

2.2. Approximating the Derivatives. The Jackknife can be thought of as a
systematic and convenient way to approximate the first and second derivatives
numerically. From the programming point of view, this has the major advantage
that we do not have to write code to compute the derivatives analytically, which
will necegsarily be specific to the problem at hand.

The p, are averages of n random variables, which take the unit vectors e; in R™
as their values. Define

AP — € 1
2. =_=n - — — P
(2.7) L il e C g
and the pseudo-values
= A
(2.8) $pi(p,) =ne(p,) - (n =1)(p,)
Now

—n —n

(29 B,) =8, - G ~p,) +oplln -1,

JACKKNIFE 3

and thus
(2.10) ®.5(p,) =¥(p,) +Gp)e; —p,) + 0p(1).

For the average pseudovalue we find
(2.11) in(gn)éif_ﬂnﬁn;j(yn) =o(p,) +op(1),
=1
and for the variance of the ps;udo—values
(2.12) zmjz_anj(&’n;j(gn) —3,(p) (@i (p) — Bulp)) =
j=1

G(p,)V(p,)G (p,) + op(1),

which shows that the variance of the pseudo-values can be used to estimate the
variance of ®(p).

To apply bias correction we again need an extra term in the expansion.
(213) slp, ;) = 0s(p,) — —79:(p,)e; —p,) +

n

3T~ R HeR e~)+ oul(n = 1)),
and thus
(2.14) {®nj(p)} =6s(p) +9:(p)e; —p) +
%n i T(es —p,) Ho(p,)(e; = p,) +0p((n = 1))
This gives for the average pseudo-value
(2.15)

5uan,) = 6.(p,) + s 1 Hi(p WV (p,) + 0pl(n — 1)),

Thus the average pseudo-value corrects for bias.

3. SOME Lisp

3.1. Symbols. In Xlisp-Stat symbols are arrays, with four elements. The elements
of the array are the print name, the symbol’s value, the symbol’s function definition,
and the property list of the symbol. All of the last three cells can be empty. The
following small sessions illustrates how the various components of a symbol are
filled. First we see that a defun defines a symbol and puts a closure in the function
cell. There is nothing in the value cell.

> (defun aragon ())

ARAGON

> (symbol-function ’aragon)
#<Closure-ARAGON: #492428>

> (symbol-value ’aragon)

Error: The variable ARAGON is unbound.
Happened in: #<Subr-TOP-LEVEL-LOOP: #44e2a4d>
> (symbol-name ’aragon)

"ARAGON"

4 JAN DE LEEUW

A setq also defines a symbol, and puts a value in the value cell.

> (setq bilbo 3)

3

> (symbol-value ’bilbo)
3

>

(symbol-function ’bilbo)
Error: The function BILBO is unbound.
Happened in: #<Subr-TOP-LEVEL-LOOP: #44e2a4d>
> (symbol-name ’bilbo)
"BILBO"

We can also create symbols, in which both the value cell and the function cell are
empty.

> (intern "FRODO")

FRODO

: INTERNAL

> (symbol-function ’frodo)

Error: The function FRODO is unbound.
Happened in: #<Subr-TOP-LEVEL-LOOP: #44e2a4d>
> (symbol-value ’frodo)

Error: The variable FRODO is unbound.
Happened in: #<Subr-TOP-LEVEL-LOOP: #44e2a4d>
> (symbol-name ’frodo)

"FRODO"

3.2. Data Types and Function Types. Xlisp-Stat has many data types. There
are strings, characters, numbers, objects, arrays, structures, streams, packages,
hash-tableg, and lists. There are also various types of fuunctions. This is illustrated
by the following session.

> (symbol-function ’mean)

#<Subr-MEAN: #10b290>

> (symbol-function ’standard-deviation)
#<Byte-Code-Closure: #1b4620>

> (defun cajun ())

CAJUN

> (symbol-function ’cajun)
#<Closure-CAJUN: #1298a0>

> (symbol-function ’setf)

#<FSubr-SETF: #e91d0>

Subr’s are built-in functions and fsubr’s are built-in special forms, which are func-
tions that do not evaluate their arguments. Functions added as Lisp code are
closures, and if the functions are byte-compiled they are byte-code-closures.

3.3. Evaluation. To understand the use of symbols better, we look into how Xlisp
evaluates its expressions ([1], page 7).

The first rule is that strings, characters, numbers, objects, prototypes, structures,
streams, subrs, fsubrs, and closures evaluate to themselves. Symbols evaluate to
the value in their value cell, if there is any. If there is none, it’s an error.

JACKKNIFE 5

Lists are evaluated by looking at the car (first element) of the list first. If it is
a symbol, the function cell is retrieved. If it is a lambda-expression, a closure is
constructed. If it is a subr or fsubr or closure, it stand for itself. If it is anything
else, it’s an error.

We then look at the remaining elements of the list. If the car was a subr or
closure, the elements are evaluated, and the subr or closure is applied to it. If the
car was an fsubr, then the fsubr is called with the remaining elements as unevaluated
arguments. It is a macro, then the macro is expanded, and the expanded macros
is called with the remaining elements as unevaluated arguments.

> (make-symbol "BOZO")
#:B0Z0
> bozo
Error: The variable BOZO is unbound.
> (bozo)
Error: The function BOZ0O is unbound.
> (setf (symbol-function ’bozo)

#’ (lambda (x) (* x x)))
#<Closure: #4907d8>
(bozo 3)

(setf (symbol-value ’bozo) 3)
(+ bozo bozo)

>
9
>
3
>
6
> (bozo bozo)
9

4. THE JACKKNIFE CODE

4.1. A Pseudovalue Closure. The key function of our Jackknife system is the
following.

(defun jack-pseudo-values (func)
#’ (lambda (data)
(letx (
(n (length data))
(1 (iseq n))
(f (symbol-function func))
(p (make-list n))
)
(dotimes (i n)
(setf (elt p i)
(funcall f (select data (which (/=i 1))))))
(- (* n (make-list n :initial-element (funcall f data)))
(* (1- n) p))
»
)

This function takes as its single argument a symbol func, with a non-empty function
cell. The function (symbol-function ’func) takes a sequence of objects as an

6 JAN DE LEEUW

argument, and produces a function which computes all pseudo-values. Thus

> (jack-pseudo-values ’max)

#<Closure: #4b2404>

> (funcall (jack-pseudo-values ’max) (normal-rand 5))

(1.8794036049709275 2.123838484548437 1.8794036049709275 1.8794036049709275
1.8794036049709275)

4.2. Pseudovalue Means and Dispersion. Two additional functions are de-
fined, which return functions computing pseudo-value averages and dispersion.
They call jack-pseudo-values

(defun jack-average (func)
#’ (lambda (data)
(average (funcall (jack-pseudo-values func) data)))

)

(defun jack-dispersion (func)
#’ (lambda (data)
(dispersion (funcall (jack-pseudo-values func) data)))

)

We need utilities to actually compute averages and dispersions. The Xlisp-Stat
functions mean and standard-deviation will not do, because they are vector re-
ducing. Thus they always return a single number, no matter if one applies them to
lists, arrays, or lists of arrays.

(defun average (x)

"Args: list

Takes the average of all elements in a list"

(if (not (listp x)) (error "Argument for AVERAGE must be a list"))
(/ (apply #’+ x) (length x)))

(defun dispersion (x)
"Args: list
Computes the dispersion of all elements in a list.
The list must have either numbers or sequences or arrays
of numbers"
(if (not (listp x)) (error "Argument for DISPERSION must be a list"))
(let (
(n (length x))
(m (average x))
(s (apply #’+ (mapcar #’(lambda (z) (outer-product z z)) x)))
)
(- (/ s n) (outer-product m m))
))

We can now investigate in detail what arguments the function that we are Jackknif-
ing can handle, i.e. for what types of functions they produce reasonable results. Let
us call the function foo, with argument foo-arg, returning resulty foo-result.
Looking at jack-me first shows that foo-arg must be a sequence, because we ap-
ply length. It also shows that foo-result must be able to be multiplied by a
scalar and to be added to itself. Thus foo-result can be a number, a vector, a

JACKKNIFE 7

list, an array, a list of arrays, an array of arrays, and so on. If we want to use
jackknife-dispersion, we see that it uses the outer-product function to com-
pute the dispersion. This means that foo-result can be an array, which is first
displaced to a vector before outer-product is applied.

The function sv-decomp, for instance, returns a list of three arrays and a logical
constant. If we want to Jackknife the singular value decomposition, we have to
define a function which makes a list of vectors into a matrix, and which strips off
the logical constant from the result.

(defun my-svd-decomp (list-of-vectors)
(select (sv-decomp (apply #’bind-rows list-of-vectors)) (0 1 2))
)

Then we can say (jackknife-pseudo-values ’my-svd-decomp). But we cannot
say (jackknife-dispersion ’my-svd-decomp), because outer-product does not
know what to do with lists of arrays.

4.3. Tying it all together. Finally, we have written a function which takes the
symbol func and produces three new symbols in the current environment. They are
JACK-PSEUDO-VALUES-0F-F00, JACK-AVERAGE-OF-F00, and JACK-DISPERSION-0F-FO0O.
These three symbols have the three closures discussed above in their function cells,

so they can be called directly, without using funcall.

(defun jack-me (func)
(let* (
(ffunc (symbol-name func))
(pname (concatenate ’string "JACK-PSEUDO-VALUES-OF-" ffunc))
(aname (concatenate ’string "JACK-AVERAGE-OF-" ffunc))
(dname (concatenate ’string "JACK-DISPERSION-OF-" ffunc))
(pfunc (jack-pseudo-values func))
(afunc (jack-average func))
(dfunc (jack-dispersion func))
(psymb (intern pname))
(asymb (intern aname))
(dsymb (intern dname))
)
(setf (symbol-function psymb) pfunc)
(setf (symbol-function asymb) afunc)
(setf (symbol-function dsymb) dfunc)
(values psymb asymb dsymb)
»)

Here is a final example. We define

(defun singular-values (list-of-vectors)
(elt (sv-decomp (apply #’bind-rows list-of-vectors)) 1)
)

and

(setq x (mapcar #’(lambda (n) (coerce (normal-rand n)’vector))
(repeat 4 100)))

This makes a list with 100 vectors of 4 normal deviates, while the function singular-values
returns a vector of singular values. Thus

8 JAN DE LEEUW

> (singular-values x)

#(11.536806970914478 10.579640568812247 9.455345232286554 8.573864335865494)
We then say

> (jack-me ’singular-values)
JACK-PSEUDO-VALUES-0F-SINGULAR-VALUES
JACK-AVERAGE-0OF-SINGULAR-VALUES
JACK-DISPERSION-OF-SINGULAR-VALUES

> (jack-average-of-singular-values x)

#(16.84083238208193 15.911544545603567 14.182201645750206
13.365352055410636)

> (print-matrix (jack-dispersion-of-singular-values x))

#2a(
(52.7149 -1.44281 -4.59448 1.29799)
(-1.44281 52.5639 -7.75757 -2.77336)
(-4.59448 -7.75757 42,6533 2.54817)
(1.29799 -2.77336 2.54817 36.4671)
)
NIL

Since in this case the population singular values are all 10, we are not too impressed
with the actual performace of the jackknife (it is plausible, that in some cases the
singular value decomposition has not converged, in which case the pseudo-values
can behave very strangely).

REFERENCES

1. T. Almy, XLISP-PLUS: Another Object-oriented Lisp, 1993, Version 2.1f.

2. B. Efron and R. J. Tibshirani, Introduction to the Bootstrap, Chapman & Hall, New York, NY,
1993.

3. P. Graham, On Lisp. Advanced Techniques for Common Lisp, Prentice Hall, Englewood Cliffs,
NJ, 1994.

4. J. Hemelrijk, Underlining Random Variables, Statistica Neerlandica 20 (1966), 1-7.

5. J. Hurt, Asymptotic Ezpansions of Functions of Statistics, Aplikace Matematiky 21 (1976),
444-456.

6. R. G. Miller, The Jackknife - A Review, Biometrika 61 (1974), 1-17.

7. L. Tierney, LISP-STAT. An Object-Oriented Environment for Statistical Computing and Dy-
namic Graphics, Wiley, New York, NY, 1990.

8. J. W. Tukey, Bias and Confidence in not Quite Large Samples, Annals of Mathematical Sta-
tistics 29 (1958), 614-614, Abstract.

UCLA STATISTICS PROGRAM, 8118 MATHEMATICAL SCIENCES BUILDING, UNIVERSITY OF CAL-
IFORNIA AT LOS ANGELES
E-mail address: deleeuw@stat.ucla.edu

