
MATRIX NORMAL BLOCK EM:
THE R PACKAGE MNBEM

JAN DE LEEUW AND WEI TAN TSAI

ABSTRACT. The Expectation-Maximization algorithm is derived as a special

case of the Majorization Method. We specialize this general derivation to mul-

tivariate normal distributions, emphasizing in particular direct sum and direct

product structures for the dispersion matrix. A special case inportant in environ-

mental stastistics is missing data imputation in generalized growth curve models

for the matrix variate normal distribution. The corresponding algorithms, with R

code, are also given.

1. INTRODUCTION

The majorization method is a general approach, or family of approaches, to con-
struct optimization methods. Some general publications about majorization are Kiers
[1990]; De Leeuw [1994]; Heiser [1995]; Lange et al. [2000]; Hunter and Lange
[2004]; De Leeuw and Lange [2009].

Suppose the problem is to minimize f : X ⇒ R over X ⊆ Rn. A function F :
X ⊗X ⇒ R is a majorization function if f (x) ≤ F(x,y) for all x,y ∈ X and
f (x) = F(x,x) for all x ∈X .

Date: Sunday 13th September, 2009 — 15h 6min — Typeset in TIMES ROMAN.
1

2 JAN DE LEEUW AND WEI TAN TSAI

The iterative majorization algorithm finds the update of x(k) by computing

X (k) ∆
=argmax

x∈X
F(x,x(k)).

If x(k) ∈X (k) we stop. Else we select x(k+1) ∈X (k). The sandwich inequality

f (x(k+1))≤ F(x(k+1),x(k))< F(x(k),x(k)) = f (x(k)

shows that the algorithm either stops, or produces a decreasing sequence of func-
tion values. Under compactness and continuity conditions this implies conver-
gence [Zangwill, 1969].

Of course if we are maximizing f , then we can construct a suitable minorization
function and maximize that in each iterative step. To cover both minorization and
majorization Lange et al. [2000] propose the name MM algorithm, where the first
M stands for either majorization or minorization, and the second M stands for either
maximation or minimization.

Majorization and minorization functions are usually derived from classical inequal-
ities, from Taylor’s Theorem, or from convexity considerations. The Expectation-
Maximization or EM algorithm is a family of MM algorithms based on Jensen’s
Inequality, usually applied in the statistical context of computing maximum likeli-
hood estimates [Dempster et al., 1977; McLachlan and Krishnan, 2008]. The gen-
eral idea of using MM algorithms in data analysis came about by realizing that the
EM algorithm, based on Jensen’s Inequality, and the SMACOF method for multi-
dimensional scaling [De Leeuw, 1977], based on the Cauchy-Schwartz Inequality,
were both examples of a more general approach to algorithm construction.

1.1. EM as MM. Suppose that g : X ⊗Y ⇒ R+, where X ⊆ Rn and Y ⊆ Rm.
Define f : X → R+ by

f (x) ∆
= log

∫
Y

g(x,y)dy.

The problem we study in this paper is maximization of f over X .

Suppose x, x̃ ∈ X . We assume that if x 6= x̃ then g(x,y) 6= g(x̃,y) for all y ∈ Y . Now

f (x)− f (x̃) = log
∫

Y g(x,y)dy∫
Y g(x̃,y)dy

= log

∫
Y g(x̃,y)g(x,y)

g(x̃,y)dy∫
Y g(x̃,y)dy

.

Let

h(x,y) ∆
=

g(x,y)∫
Y g(x,y)dy

.

MATRIX NORMAL EM 3

Then
∫

Y h(x,y)dy = 1 for all x and

f (x)− f (x̃) = log
∫

Y
h(x̃,y)

g(x,y)
g(x̃,y)

dy.

Applying Jensen’s Inequality to the right hand side gives

f (x)> f (x̃)+ k(x, x̃)− k(x̃, x̃),

where we use the abbreviation

k(x, x̃) ∆
=
∫

Y
h(x̃,y) logg(x,y)dy.

The function F(x, x̃) = f (x̃)+k(x, x̃)−k(x̃, x̃) is the required minorization function.

This leads to the MM algorithm in which

X (k) ∆
=argmax

x∈X
F(x,x(k)) = argmax

x∈X
k(x,x(k)),

and x(k+1) ∈X (k).

2. MULTINORMAL EM

2.1. General. In the case of a p−dimensional multinormal density the parameter
space X is some set of mean vectors µ and covariance matrices Σ. We write

g(µ,Σ,y) =
1√

(2π)p|Σ|
exp{−1

2
(y−µ)′Σ−1(y−µ)}.

Thus

f (µ,Σ) = log
∫

Y
g(µ,Σ,y)dy,

and

h(µ,Σ,y) =
g(µ,Σ,y)∫

Y g(µ,Σ,y)dy
.

The MM algorithm minimizes

(1) `(µ,Σ, µ̃, Σ̃) = log |Σ|+
∫

Y
h̃(µ̃, Σ̃,y)(y−µ)′Σ−1(y−µ)dy.

If we let

(2a) m̃ ∆
=
∫

Y
h(µ̃, Σ̃,y)ydy,

and

(2b) Ṽ ∆
=
∫

Y
h(µ̃, Σ̃,y)(y− m̃)(y− m̃)′dy,

4 JAN DE LEEUW AND WEI TAN TSAI

then

(3) `(µ,Σ, µ̃, Σ̃) = log |Σ|+ tr Σ
−1Ṽ +(m̃−µ)′Σ−1(m̃−µ).

2.2. Marginal Constraints. Suppose there is a z ∈ Rp such that Y = {z}⊗Rq,
with p+ q = m. Integration is over the last q of the m coordinates of y = (z,u),
with the first p coordinates fixed at z. Thus

f (µ,Σ,z) = log
∫
Rq

g(µ,Σ,z,u)du.

In this case h is the conditional density of u given z. Thus

h(µ,Σ,u,z) =
1√

(2π)q|Σu|z|
exp{−1

2
(u−µu|z)

′
Σ
−1
u|z (u−µu|z)},

where

µu|z = µu +ΣuzΣ
−1
zz (z−µz),(4a)

Σu|z = Σuu−ΣuzΣ
−1
zz Σzu.(4b)

It follows directly that

m̃ =

[
z

µ̃u + Σ̃uzΣ̃
−1
zz (z− µ̃z)

]
,(5a)

Ṽ =

[
0 0
0 Σ̃uu− Σ̃uzΣ̃

−1
zz Σ̃zu

]
.(5b)

From the computational point of view we can most easily compute µu|z and Σu|z by
applying the sweep operator, explained for example in Lange [1999, Chapter 7], to
the joint dispersion matrix Σ̃, sweeping the elements corresponding with z.

2.3. Direct Sums. Suppose Σ has direct sum structure, i.e. there are n positive
semi-definite matrices Σi, or order mi, such that

Σ =

Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σn

 .

MATRIX NORMAL EM 5

The corresponding partition of µ is

µ =

µ1

µ2
...

µn

 .
Then

f (µ,Σ) =
n

∑
i=1

log
∫

Yi

g(µi,Σi,y)dy,

where Yi ⊆ Rmi . Also

(6a) `(µ,Σ, µ̃, Σ̃) =
n

∑
i=1

{
log |Σi|+

∫
Yi

hi(µ̃i, Σ̃i,y)(y−µi)
′
Σ
−1
i (y−µi)dy

}
,

where

hi(µ̃i, Σ̃i,y) =
g(µ̃i, Σ̃i,yi)∫

Yi
g(µ̃i, Σ̃i,y)dy

.

Thus, with obvious indexing notation,

(6b) `(µ,Σ, µ̃, Σ̃) =
n

∑
i=1

{
log |Σi|+ tr Σ

−1
i Ṽi +(m̃i−µi)

′
Σ
−1
i (m̃i−µi)

}
.

This is basically the same as n replications of Equation (3).

2.4. Repeated Independent Trials. The results from Section 2.3 simplify if all Σi

are equal to, say, the same positive definite matrix Σ of order m 1Define Ṽ ∆
= 1

n ∑
n
i=1 Ṽi.

Then

(7a)
1
n
`(µ,Σ, µ̃, Σ̃) = log |Σ|+ tr Σ

−1Ṽ +
1
n

n

∑
i=1

(m̃i−µi)
′
Σ
−1(m̃i−µi).

If we collect all m̃i in the n×m matrix M̃ and all µi in the n×m matrix Ξ, then

(7b)
1
n
`(µ,Σ, µ̃, Σ̃) = log |Σ|+ tr Σ

−1Ṽ +
1
n

tr (M̃−Ξ)Σ−1(M̃−Ξ)′.

Define S(Ξ) ∆
= 1

n(M̃−Ξ)′(M̃−Ξ). Then

(7c)
1
n
`(µ,Σ, µ̃, Σ̃) = log |Σ|+ tr Σ

−1Ṽ + tr Σ
−1S(Ξ).

1Observe we use Σ both for the m×m column-covariances, and for I⊗Σ = Σ⊕·· ·⊕Σ︸ ︷︷ ︸
n times

. It will be

obvious from the context which Σ we mean.

6 JAN DE LEEUW AND WEI TAN TSAI

If the µi are also equal we define m̃ ∆
= 1

n ∑
n
i=1 m̃i. We then find

(7d)
1
n
`(µ,Σ, µ̃, Σ̃) = log |Σ|+ tr Σ

−1Ṽ +(m̃−µ)′Σ−1(m̃−µ)+ tr Σ
−1S,

where S ∆
= 1

n ∑
n
i=1(m̃i− m̃)(m̃i− m̃)′.

2.5. Direct Product (Kronecker) Structure. Now consider the more general case
in which the dispersion matrix is the nm×nm matrix Γ⊗Σ, where Γ is of order n
and Σ is of order m. This defines the matrix variate normal distribution, discussed in
detail in Gupta and Nagar [2000]. The repeated independent trials from Section 2.4
are the special case in which Γ= I. In the usual interpretation we have an n×m ma-
trix valued random variable Y , and there is a row covariance matrix Γ and a column
covariance matrix Σ, which combine to the direct product covariance matrix Γ⊗Σ

of all nm variables y
i j

. Note that assuming Kronecker structure reduces the number

of parameters in the dispersions from 1
2 nm(nm+1) to 1

2 n(n+1)+ 1
2 m(m+1).

In environmental statistics direct product covariance structures are used to approx-
imate the impractically large covariance matrices of space time time or vector-
valued time series. In that context, covariance matrices with direct product, or
Kronecker, structure are often called separable. See, for example, Matsuda and
Yajima [2004], Lu and Zimmerman [2005] or Mitchell et al. [2006]. In the context
of growth curve models Kronecker product dispersion matrices have been stud-
ied by many authors. Some recent interesting publications are Srivastava et al.
[2008a,b]. For repeated measures data, Kronecker product covariance structures
have been proposed by Naik and Rao [2001] and Roy and Khattree [2005]. In
most of the papers cited, however, emphasis is on estimation and testing, and not
on actual computation.

The log-likelihood for the matrix variate normal is

(8) logg(Ξ,Γ,Σ,Y) = m logΓ+n logΣ+ tr Γ
−1(Y −Ξ)Σ−1(Y −Ξ)′,

and the majorization function for multinormal EM becomes

(9) `(Ξ,Γ,Σ, Ξ̃, Γ̃, Σ̃) =

= m log |Γ|+n log |Σ|+ tr (Γ−1⊗Σ
−1)Ṽ + tr Γ

−1(M̃−Ξ)′Σ−1(M̃−Ξ).

Observe that now Ṽ is of order nm, and it has a non-zero row and column for all
missing elements of the n×m data matrix.

MATRIX NORMAL EM 7

3. MULTINORMAL MAXIMUM LIKELIHOOD USING BLOCK RELAXATION

The block relaxation method for multinormal maximum likelihood estimation [Ober-
hofer and Kmenta, 1974; De Leeuw, 1994] is designed to minimize

D(µ,Σ) = logg(µ,Σ,x) = log |Σ|+(x−µ)′Σ−1(x−µ)

over µ ∈M ⊆ Rm and Σ ∈P ∈ Rm×m. The algorithm alternates optimization of
µ and Σ, and computes its updates using the rule

µ
(k+1) ∈ argmin

µ∈M
(x−µ)′[Σ(k)]−1(x−µ),(10a)

Σ
(k+1) ∈ argmin

Σ∈P
log |Σ|+ tr Σ

−1(x−µ
(k+1))(x−µ

(k+1))′.(10b)

The update rules in (10) can be relaxed to define generalized block methods. It is
not necessary to minimize in each of the two subproblems, it is enough to strictly
decrease, as long as this decrease is done with continuous maps. So suppose we
have two continuous maps F : Rm⊗Rm×m → Rm and G : Rm⊗Rm×m → Rm×m.
Define µ(k+1) = F(µ(k),Σ(k)) and Σ(k+1) = G(µ(k+1),Σ(k)). Suppose

(x−µ
(k+1))′[Σ(k)]−1(x−µ

(k+1))< (x−µ
(k))′[Σ(k)]−1(x−µ

(k)),

and

log |Σ(k+1)|+ tr [Σ(k+1)]−1(x−µ
(k+1))(x−µ

(k+1))′ <

< log |Σ(k)|+ tr [Σ(k)]−1(x−µ
(k+1))(x−µ

(k+1))′

This still defines a convergent algorithm.

3.1. Block EM. Using our EM results we can extend the block relaxation algo-
rithm to minimizing

D(µ,Σ) = log
∫

Y
g(µ,Σ,y)dy

One possible sequence of steps is

m(k) =
∫

Y
h(µ(k),Σ(k),y)ydy,(11a)

V (k) =
∫

Y
h(µ(k),Σ(k),y)(y−m(k))(y−m(k))′dy,(11b)

µ
(k+1) ∈ argmin

µ∈M
(m(k)−µ)′[Σ(k)]−1(m(k)−µ),(11c)

Σ
(k+1) ∈ argmin

Σ∈P
log |Σ|+ tr Σ

−1{V (k)+(m(k)−µ
(k+1))(m(k)−µ

(k+1))′}.(11d)

8 JAN DE LEEUW AND WEI TAN TSAI

There are many variations possible, however. We can alternate 11c and 11d a
number of times, before we go back to 11a and 11b. We can do steps 11a and 11b
after each step 11c and after each step 11d. And so on. In some cases it will even
be possible to replace 11c and 11d by

(µ(k+1),Σ(k+1)) ∈ argmin
µ∈M ,Σ∈P

log |Σ|+ tr Σ
−1{V (k)+(m(k)−µ)(m(k)−µ)′}.

For instance if there are no constraints on µ , i.e. M =Rm, then µ(k+1) = m(k), and

Σ
(k+1) ∈ argmin

Σ∈P
log |Σ|+ tr Σ

−1V (k).

3.2. Kronecker Weights. Minimizing (9) requires some extra thought. We will
use a block algorithms with five substeps.

m(k) = vec(M(k)) =
∫

Y
h(µ(k),Γ(k),Σ(k),y)vec(Y)dy,(12a)

V (k) =
∫

Y
h(µ(k),Γ(k),Σ(k),y)(vec(Y)−m(k))(vec(Y)−m(k))′dy,(12b)

Ξ
(k+1) ∈ argmin

Ξ∈M
tr {[Γ(k)]−1(M(k)−Ξ)[Σ(k)]−1(M(k)−Ξ)′},(12c)

Γ
(k+1) ∈ argmin

Γ∈G
m log |Γ|+ tr (Γ−1⊗ [Ω(k)]−1)V (k)+ tr Γ

−1
Γ̂
(k),(12d)

Σ
(k+1) ∈ argmin

Σ∈S
n log |Σ|+ tr ([Γ(k+1)]−1⊗Ω

−1)V (k)+ tr Σ
−1

Σ̂
(k),(12e)

where

Γ̂
(k) = (M(k)−Ξ

(k+1))[Σ(k)]−1(M(k)−Ξ
(k+1))′,(13a)

Σ̂
(k) = (M(k)−Ξ

(k+1))′[Γ(k+1)]−1(M(k)−Ξ
(k+1)).(13b)

The piece de résistance is the term tr (Γ−1⊗Ω−1)V (k), which involves multipli-
cation of two nm× nm matrices. Since we have applications in mind where nm
could be of order 104, the matrices could grow unpleasantly large. We can use the
Kronecker structure of Γ−1⊗Ω−1 and the sparseness of V (k) to get considerable
savings in computation and storage.

If we are updating Σ in the block relaxation process we use

tr (Γ−1⊗Σ
−1)V (k) = tr Σ

−1
n

∑
i=1

n

∑
k=1

γ
ikV (k)

ik ,

MATRIX NORMAL EM 9

where the γ ik are the elements of Γ−1 and the V (k)
ik are the m×m submatrices of

V (k) corresponding with row i and row k of Y . Note that element j, ` of V (k)
ik is

nonzero if and only if both yi j and yk` are missing.

In the same way if we are updating Γ we use

tr (Γ−1⊗Σ
−1)V (k) = tr Γ

−1
m

∑
j=1

m

∑
`=1

σ
j`V (k)

j` ,

where now the V (k)
j` are the n×n submatrices of V (k) corresponding with column j

and column ` of Y .

It is probably a good idea to start the iterations by minimizing the log-likelihood (8)
over Σ, Γ, and Ξ and over the missing elements of Y . This avoids the huge Kro-
necker products altogether and can be assumed to give a good initial estimate of
the structural parameters. At some point, we then let the algorithm (12) take over.

10 JAN DE LEEUW AND WEI TAN TSAI

REFERENCES

J. De Leeuw. Applications of Convex Analysis to Multidimensional Scaling. In
J.R. Barra, F. Brodeau, G. Romier, and B. Van Cutsem, editors, Recent develop-
ments in statistics, pages 133–145, Amsterdam, The Netherlands, 1977. North
Holland Publishing Company.

J. De Leeuw. Block Relaxation Methods in Statistics. In H.H. Bock, W. Lenski,
and M.M. Richter, editors, Information Systems and Data Analysis, Berlin, 1994.
Springer Verlag.

J. De Leeuw and K. Lange. Sharp Quadratic Majorization in One Dimension.
Computational Statistics and Data Analysis, 53:2471–2484, 2009.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incom-
plete Data via the EM algorithm (with Discussion). Journal of the Royal Statis-
tical Society Series B, 39:1–38, 1977.

A.K. Gupta and D.K. Nagar. Matrix Variate Distributions. Chapman & Hall/CRC,
Boca Raton, Florida, 2000.

W.J. Heiser. Convergent Computing by Iterative Majorization: Theory and Ap-
plications in Multidimensional Data Analysis. In W.J. Krzanowski, editor, Re-
cent Advantages in Descriptive Multivariate Analysis, pages 157–189. Claren-
don Press, Oxford, 1995.

D.R. Hunter and K. Lange. A Tutorial on MM Algorithms. American Statistician,
58(30–37), 2004.

H. Kiers. Majorization as a Tool for Optimizing a Class of Matrix Functions.
Psychometrika, 55:417–428, 1990.

K. Lange. Numerical Analysis for Statisticians. Springer, Berlin, Heidelberg, New
York, 1999.

K. Lange, D.R. Hunter, and I. Yang. Optimization Transfer Using Surrogate Ob-
jective Functions. Journal of Computational and Graphical Statistics, 9:1–20,
2000.

N. Lu and D.L. Zimmerman. The Likelihood Ratio Test for a Separable Covariance
Matrix. Statistics and Probability Letters, 73:449–457, 2005.

Y. Matsuda and Y. Yajima. On Testing for Separable Correlations of Multivariate
Time Series. Journal of Time Series Analysis, 25:501–528, 2004.

G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, New
York, second edition, 2008.

MATRIX NORMAL EM 11

M.W. Mitchell, M.G. Genton, and ML. Gumpertz. A Likelihood Ratio Test for
Seperability of Covariances. Journal of Multivariate Analysis, 97:1025–1043,
2006.

D.N. Naik and S.S. Rao. Analysis of Multivariate Repeated Measures Data with a
Kronecker Product Structured Covariance Matrix. Journal of Applied Statistics,
28:91–105, 2001.

W. Oberhofer and J. Kmenta. A General Procedure for Obtaining Maximum Likeli-
hood Estimates in Generalized Regression Models. Econometrica, 42:579–590,
1974.

A. Roy and R. Khattree. On Implementation of a Test for Kronecker Product Co-
variance Structure for Multivariate Repeated Measures Data. Statistical Method-
ology, 2:297–306, 2005.

M.S. Srivastava, T. von Rosen, and D. von Rosen. Models with a Kronecker Prod-
uct Covariance Structure: Estimation and Testing. Mathematical Methods of
Statistics, 17:357–370, 2008a.

M.S. Srivastava, T. von Rosen, and D. von Rosen. Estimation in General Multi-
variate Linear Models with Kronecker Product Covariance Structure. Research
Report 2008:1, Center of Biostatistics, Swedish University of Agricultural Sci-
ences, 2008b.

W. I. Zangwill. Nonlinear Programming: a Unified Approach. Prentice-Hall,
Englewood-Cliffs, N.J., 1969.

12 JAN DE LEEUW AND WEI TAN TSAI

APPENDIX A. CODE

1 #

2 # mnem package

3 # Copyright (C) 2009 Jan de Leeuw <deleeuw@stat.ucla.edu>

4 # UCLA Department of Statistics, Box 951554, Los Angeles, CA 90095-1554

5 #

6 # This program is free software; you can redistribute it and/or modify

7 # it under the terms of the GNU General Public License as published by

8 # the Free Software Foundation; either version 2 of the License, or

9 # (at your option) any later version.

10 #

11 # This program is distributed in the hope that it will be useful,

12 # but WITHOUT ANY WARRANTY; without even the implied warrant(y) of

13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 # GNU General Public License for more details.

15 #

16 # You should have received a copy of the GNU General Public License

17 # along with this program; if not, write to the Free Software

18 # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

19 #

20 ###

21 #

22 # version 0.1, 2009-06-06 Initial Release

23 # version 0.2, 2009-06-08 Added some stuff

24 #

25

26 # which(outer(i,j,function(x,y) is.na(x)&is.na(y)))

27

28 imputeK<-function(y,v,w,mu) {

29 n<-nrow(y); m<-ncol(y)

30 vsig<-kronecker(v,w); vy<-as.vector(t(y)); vmu<-as.vector(t(mu))

31 vim<-imputeY(vy,vsig,vmu)

32 return(list(vim=matrix(vim$yimp,n,m,byrow=TRUE),vvv=vim$vimp))

33 }

34

35 sigmaHat<-function(vmat,v) {

36 n<-nrow(v); m<-nrow(vmat)/n; mm<-1:m; shat<-matrix(0,m,m)

37 for (i in 1:n) for (k in 1:n)

38 shat<-shat+v[i,k]*vmat[mm+(i-1)*m,mm+(k-1)*m]

39 return(shat)

40 }

41

42 gammaHat<-function(vmat,w) {

43 m<-nrow(w); n<-nrow(vmat)/m; mm<-(0:(n-1))*m; ghat<-matrix(0,n,n)

44 for (j in 1:m) for (l in 1:m)

45 ghat<-ghat+w[j,l]*vmat[mm+j,mm+l]

46 return(ghat)

47 }

48

49 # given a multivariate normal with mean mu and

50 # covariance matrix sig, and a vector of observations y,

51 # impute the missing values in y and the corresponding

MATRIX NORMAL EM 13

52 # conditional covariance matrix

53

54 imputeY<-function(y,sig,mu) {

55 n<-length(y); nm<-is.na(y)

56 indi<-which(!nm); v<-matrix(0,n,n)

57 cs<-condiStat(sig,mu,y[indi],indi)

58 y[nm]<-cs$cmean; v[nm,nm]<-cs$cdisp

59 return(list(yimp=y,vimp=v))

60 }

61

62 # given a multivariate normal with mean mu and

63 # covariance matrix sig, compute the conditional

64 # mean and variance if we fix the variables indexed

65 # with indi to be equal to z

66

67 condiStat<-function(sig,mu,z,indi) {

68 m<-nrow(sig); jndi<-(1:m)[-indi]

69 mv<-rep(0,m); mv[indi]<-mu[indi]-z; mv[jndi]<-mu[jndi]

70 aa<-sweeper(cbind(sig,mv),indi)

71 return(list(cmean=aa[jndi,m+1],cdisp=aa[jndi,jndi]))

72 }

73

74 # beaton’s sweep function

75

76 sweeper<-function(a,indi) {

77 n<-nrow(a); m<-length(indi)

78 for (j in indi) {

79 pv<-a[j,j]

80 if (pv == 0) next()

81 pr<-a[j,-j]; pc<-a[-j,j]

82 a[j,j] <- -1/pv

83 a[j,-j] <- pr/pv

84 a[-j,j] <- pc/pv

85 a[-j,-j] <- a[-j,-j]-outer(pc,pr)/pv

86 }

87 return(a)

88 }

89

90 # this minimizes trace{(y-mu)’(y-mu)} over the

91 # missing elements of y

92

93 imputeOLS<-function(y,mu) return(ifelse(is.na(y),mu,y))

94

95 imputeWLS<-function(y,k,ginv,sinv,mu,eps=1e-6,itmax=100,verbose=FALSE)

96 {

97 n<-nrow(y); m<-ncol(y); itel<-1

98 res<-y-mu; ras<-ginv%*%res%*%sinv; ff<-sum(ras*res)

99 wgt<-outer(diag(ginv),diag(sinv))

100 repeat {

101 thmax<-0

102 for (i in 1:n) for (j in 1:m) {

103 if (!is.na(k[i,j])) next()

104 rij<-ras[i,j]; wij<-wgt[i,j]

14 JAN DE LEEUW AND WEI TAN TSAI

105 th<--rij/wij

106 thmax<-max(thmax,abs(th))

107 z[i,j]<-z[i,j]+th

108 ff<-ff-(rij^2)/wij

109 ras<-ras+th*outer(ginv[,i],sinv[,j])

110 }

111 if (verbose)

112 cat("itel",formatC(itel,format="d",width=4)," maxth",formatC(thmax,

format="f",digits=8,width=15)," func",formatC(ff,format="f",digits

=8,width=15),"\n")

113 if ((thmax < eps) || (itel == itmax)) break()

114 itel<-itel+1

115 }

116 return(y)

117 }

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu

E-mail address, Wei Tan Tsai: tsai@stat.ucla.edu

URL, Wei Tan Tsai: http://www.stat.ucla.edu/~tsai/

	1. Introduction
	1.1. EM as MM

	2. Multinormal EM
	2.1. General
	2.2. Marginal Constraints
	2.3. Direct Sums
	2.4. Repeated Independent Trials
	2.5. Direct Product (Kronecker) Structure

	3. Multinormal Maximum Likelihood using Block Relaxation
	3.1. Block EM
	3.2. Kronecker Weights

	References
	Appendix A. Code

