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1. Problem

The n ×m data matrix Y is supposed to be a realization of a ma-

trix normal random variable Y [Gupta and Nagar, 2000]. Thus the

negative log-likelihood is of the form

D(M,Σ,Ω) =m log det(Σ)+n log det(Ω)+tr Σ−1(Y−M)Ω−1(Y−M)′.

This can also be written, using Kronecker products, as

D(M,Σ,Ω) = log det(Σ⊗Ω)+ (y − µ)′(Σ⊗Ω)−1(y − µ),

where y = vec(Y) and µ = vec(M). See, for example, Abadir and

Magnus [2005].

1.1. Parametrization. In this paper we choose the triple-product

or Pothoff-Roy parametrizationM= XBZ′ for the n×m matrix of

expectations [Pothoff and Roy, 1964]. Matrix X of row-regressors

is n × s, matrix Z of column-regressors is m × t, and matrix B of

regression coefficients is s × t. In general there may be additional

constraints on each of the three matrices in the product.

The dispersions are parametrized as

Σ⊗Ω = σ 2(DV(θ)D)⊗ (EW(ξ)E)

Here D and E are diagonal matrices of row and column variances,

and V(θ) and W(ξ) are matrix-valued functions defining row and

column covariance structures. Additional constraints are usualluy
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needed for identification, or to arrive at more interpretable struc-

tures.

Thus we discuss minimization of the loss function

D(Y ,X, B, Z,D, E, θ, ξ,σ 2) = nm logσ 2+m
n∑
i=1

logd2
i+n

m∑
j=1

log e2
j+

+m log det(V(θ))+n log det(W(ξ))+

+ 1
σ 2

tr D−1V−1(θ)D−1(Y −XBZ′)E−1W−1(ξ)E−1(Y −XBZ′)′

over all its nine sets of parameters, with various constraints on

each set. The problem is called separable, because both in the

expectations and in the dispersions there are row and column pa-

rameters. No parameters, except perhaps B and σ 2 refer to both

rows and columns.

Although our original motivation is the matrix normal distribu-

tion, and the negative log likelihood function, we can alternatively

just think of our loss function as a way to simultaneously fit si-

multaneously fit parametric structures to both the expectations

and the residuals. The negatve log-likelihood function measures

the distance between the data and the covariance matrix of the

residuals and the nonlinear manifolds that describe their expecta-

tions [de Leeuw and Kreft, 1986]. That distance is then minimized,

i.e. data and residuals are projected on these manifolds.

2. Constraints

2.1. Expectations. The matrices X, B and Z can be partially fixed

and partially free, which means minimization is only over a subset

of their elements. The free elements can be restricted to be non-

negative.

If X and Z are free and B is fixed to the identity we fit variations of

principal component analysis (and non-negative PCA if we require

the elements of X and Z to be non-negative). If X and Z are both
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fixed and only B is free we fit growth curve models, if X is fixed

and B and Z are free this becomes redundancy analysis or reduced

rank regression analysis.

2.2. Dispersions. D and E are (positive) diagonal matrices. They

can be either free, and we minimize over them, or they can be

fixed to given matrices. They are fixed, for example, in simple,

multiple, canonical, and joint correspondence analysis [Greenacre

and Blasius, 2006], in which we choose them equal to the marginals

of the contingency table or Burt table.

Matrix V is a (positive definite) matrix-valued function of p ≥ 0

parameters θ, and matrix W is a (positive definite) matrix-valued

function of q ≥ 0 parameters ξ. We define the matrices of partial

derivatives Gs(θ)
∆=DsV(θ) and Hs(ξ)

∆=DsW(ξ). One options is

that V and/or W are equal to fixed matrices, in which case the

partial derivatives are obviously equal to zero.

One example of the parametric specification of V is the linear co-

variance structure

V(θ) = I +
p∑
s=1

θsGs ,

with the Gs known matrices. Obviously in this case Gs(θ) = Gs . An

important special case is V(θ) ≡ I.

Another example is the common factor structure

V(θ) = I +A(θ)A(θ)′,

whereA(θ) =
∑p
s=1 θsUs , with the Us known matrices. HereGs(θ) =

A(θ)U ′s +UsA(θ)′.

There are also one-parameter structures, such as the exponential

distance structure with

vik(θ) =

1 if i = k,
exp(−θδik) otherwise.
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where ∆ is a given distance-like (symmetric, positive, and hollow)

matrix. A special case is the Kac-Murdoch-Szego structure, which

has δik = |i − k|, or the Olkin-Press structure, which has δik =
min(|i − k|, n − |i − k|). These structures are scaled such that

vik(0) = 1 for all i, k and limθ→∞ V(θ) = I.

2.3. Data. The data Y can have missing components, i.e. some

elements may be unknown. We have implemented two ways to

deal with such missing data. The empty cells can be additional

parameters over which the loss function is minimized, or they can

be imputed by the multinormal EM algorithm. In the context of

point estimation the two methods are compared in Little and Rubin

[1983].

3. Algorithm

The basic algorithm is block relation [Oberhofer and Kmenta, 1974;

De Leeuw, 1994]. We cycle through the nine blocks of parameters,

and in each of the nine sub-steps that define a cycle we keep eight

blocks of parameters fixed at their current values and minimize

over the ninth blocks.

Of course in some cases blocks of parameters are fixed, and we can

skip the corresponding substep. In other cases minimizing over a

parameter block is an iterative process which does not converge in

a finite number of iterations, and we must truncate it before it is

properly finished.

For the minimization in the substeps we use the R function nlminb,

which also allows for bound constraints on the parameters in the

block. In the special case of one-parameter models for V(θ) and

W(ξ) we can also use the optimize function.
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Define

Ŷ (X, B, Z) ∆=XBZ′,
R(Y ,X, B, Z) ∆=Y − Ŷ (X, B, Z),

V(θ,D) ∆=DV(θ)D,
W(ξ, E) ∆=EW(θ)E.

4. Step 1: Minimization over σ 2

The loss function is minimized at

σ̂ 2 = 1
nm

tr W−1R′V−1R.

5. Step 2: Minimization over D and E

If D is free, then we must minimize

f(d) =m
n∑
i=1

logd2
i + tr D−1V−1D−1S

where S = RW−1R′. Suppose T = S ? V−1 is the elementwise

(Hadamard) product of S and V−1. Then

f(d) = 2m
n∑
i=1

logdi +
n∑
i=1

n∑
k=1

tik
didk

,

with derivative

Dif(d) = 2
m
di
− 2

1

d2
i

n∑
k=1

tik
dk
.

Obviously the equations for minimizing over E are similar.

6. Step 3: Minimization over V and W

The part of the loss function that depends on θ is

f(θ) =m log det(V(θ))+ tr V−1(θ)S,

where

S = D−1RW−1R′D−1
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The partial derivatives are

Dsf(θ) =mtr V−1(θ)Gs(θ)− tr V−1(θ)Gs(θ)V−1(θ)S.

7. Step 4: Minimization over X,B,Z

We have to minimize

S(X) = tr V−1(Y −XBZ′)W−1(Y −XBZ′)′

The unconstrained optimum is attained at any solution X̃ of

X[BZ′W−1ZB′] = YW−1ZB′.

Define C = BZ′W−1ZB′. Partition the residual sum of squares by

using

S(X) = S(X̃)+ tr (X − X̃)′V−1(X − X̃)C.

Thus if there are constraints on X we must minimize the second

term

(1) P(X) = tr (X − X̃)′V−1(X − X̃)C.

7.1. Pattern.
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