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1. SLICING ANALYSIS

In a slicing analysiswe look at the distribution of an outcome variable
in various slices of the population of students. In the example we are in-
terested in here, for instance, slices are defined bytest scoreandrace, and
the outcome variable is some form ofplacementof the student. Somewhat
more generally, we will look at examples in which we study relationships
between an outcome variableY, a covariateX, and a grouping variableZ.
Both X andY can be multivariate. Thus slicing analysis is a particular (often
tabular) form of theanalysis of covariance.

More formally, we study the conditional distribution1 of y given x and
z, or, equivalently, the regression ofy on x and z. The joint probability

distribution2 π(xyz) is decomposed as

(1.1) π(yxz) = π(y|xz)π(xz)

We can also present the model in a simple path diagram.

Date: March 11, 2001.
1We use the convention of underlining random variables.
2This can be either a discrete distribution – a table with probabilities –, a continuous

density, or a combination of the two.
1
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FIGURE 1. Placement as function of test and race

For the moment, ignore the fact that one of the single arrows is dashed
and the other one is solid.

The path diagram, and the equivalent decomposition in Equation (1.1),
define asaturatedmodel, i.e. a model which always fits the data perfectly,
no matter what the data are. Thus we do not have to fit or test, we just
present the data in the form of the joint marginal distribution ofx andz and
the conditional distribution ofy in each of the “cells” defined byx andz.

2. THE DATA

Data for the example are taken from Oakes [2000]. They were provided
by the Rockford, Illlinois, school district in connection with a desegrega-
tion case. The table on the left gives the marginal distribution (of student-
placements) for deciles of the SAT9 test and for the minority and majority
groups. The table on the right gives the probability of placement in advanced
classes in 1999-2000 for each of the cells.

Dec Maj Min
01 633 1212
02 941 1207
03 1166 1103
04 1492 1109
05 1367 667
06 1819 650
07 1788 446
08 2346 377
09 2271 227
10 2124 98

Dec Maj Min
01 0.03 0.02
02 0.05 0.04
03 0.07 0.07
04 0.15 0.13
05 0.20 0.15
06 0.31 0.24
07 0.46 0.37
08 0.61 0.59
09 0.74 0.70
10 0.86 0.81

TABLE 1. Joint marginal (left) and conditional distribution
(right) for Rockford data

It is important to see that no assumptions are involved in this “analysis”. It
is descriptive, it merely presents the actual data. One can make the argument
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that the tables are misleading, because they do not clearly show sampling
distributions of the probabilities, and some of them are measured much more
precisely than others. One could also argue that these “raw” tables could
perhaps be smoothed somewhat to surpress the effect of random fluctuations,
especially in the cells with a small number of observations. We shall address
some of these concerns below.

The actual data can also be presented graphically. This is done in Figure 2,
which shows the proportions of placement in more advanced courses for the
10 deciles of the SAT9.
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FIGURE 2. Conditional distributions for majority (green)
and minority (red) students

3. TESTING

The arrow fromz to y in Figure 1 is dashed. This is because in our
example we are interested in the (more restrictive) model in which group
membershipz is not relevant for placement, i.e.

(3.1) π(xyz) = π(y|x)π(xz).

In this model, the dashed arrow is missing.
In specific situations the model implies various testable consequences.

• If the regressions are linear, then the coefficient ofz in the regression
of y on x andz should be zero.
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• If variables are discrete, then we can form cross tables ofy andx for
each value ofz. Supposex defines rows andy defines columns of
these tables, and normalize the tables such that rows add up to one.
Then each of the tables should be the same.

In our example the missing arrow means that the two columns of the right
part of Table 1 are equal. We can test this is many ways, either by testing the
equality of the probabilities themselves, or by testing the equality of some
transform of the probabilities. Because of other computations in this report,
we compute the inverse probit transform8−1(p) and its estimated standard
errors. The delta-method approximation to the sampling variance of a probit
is given by

(3.2) V(8−1(p)) =
π(1 − π)

nφ2(8−1(π))
,

whereπ is the true probability of success andn is the number of trials. We
can estimate these variances by substituting sample proportionsp for π , and
then compute estimated standard errors by taking square roots.

The results are given in Table 2.

Dec Maj Min
01 -1.88 -2.05
02 -1.64 -1.75
03 -1.48 -1.48
04 -1.04 -1.13
05 -0.84 -1.04
06 -0.50 -0.71
07 -0.10 -0.33
08 0.28 0.23
09 0.64 0.52
10 1.08 0.88

Dec Maj Min
01 0.0996 0.0830
02 0.0689 0.0655
03 0.0557 0.0572
04 0.0398 0.0477
05 0.0386 0.0593
06 0.0307 0.0539
07 0.0297 0.0605
08 0.0262 0.0652
09 0.0284 0.0875
10 0.0338 0.1460

TABLE 2. Probits (left) with standard errors (right) for Rock-
ford Data

We can now also compute the difference of the probits for majority and
minority students, and their standard errors, z-values, and significance prob-
abilities. These are given in Table 3. If we summarize the information in
this table, and test the hypothesis that the majority and minority columns are
the same, we find a chi-square of 40.01 with 10 degrees of freedom, which
gives a p-value less that.0001.
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Dec Diff StErr z-value p-value
01 0.17 0.130 1.33 0.091
02 0.11 0.095 1.11 0.132
03 0.00 0.080 0.00 0.500
04 0.09 0.062 1.45 0.074
05 0.19 0.071 2.75 0.003
06 0.21 0.062 3.39 0.000
07 0.23 0.067 3.43 0.000
08 0.05 0.070 0.74 0.231
09 0.12 0.092 1.29 0.098
10 0.20 0.150 1.35 0.088

TABLE 3. Probit comparisons per slice

4. PROBIT ANALYSIS

Working with saturated models has the advantage that we stay close to the
data, and we do not have to make assumptions that we do not feel comfortable
about. On the other hand, using restrictive models often gives us more power,
fewer parameters, and more ease of interpretation.

In this section we reduce the number of parameters from twenty (the
number of probits) to eleven, by using the model

(4.1a) π(1|xz) = 8(α(z) + γ (x)).

This model says that the 10× 2 Table 2 of probits is additive, i.e. there is
not interaction between test score and ethnicity.

We now further reduce the number of parameters to four by using the
model

(4.1b) π(1|xz) = 8(α(z) + β(z)x),

and then to three by using

(4.1c) π(1|xz) = 8(α(z) + βx),

Models (4.1b) and (4.1c) say that probits are linear with deciles. In (4.1b)
the two ethnicity groups have different slopes and intercepts, in (4.1c) they
have different intercepts but the same slope. This is the probit version of the
analysis of covariance.

5. MEASUREMENTERROR

Slice analyses (and similar group comparison techniques) have been crit-
icized because they do not take measurement error in the predictors into
account [Lord, 1960; Cronbach et al., 1977]. In our example, there is no



6 JAN DE LEEUW

error in the grouping variable, but the test score, of course, supposedly mea-
sures an underlying achievement variable. And it does so imperfectly. Once
again, we capture this idea in a path diagram.

Supposeξ is thetrue scoreof a test, andx is the observed score. Moreover
y is the placement variable, andz is the grouping variable. We now draw
the saturated model

z

��<
<<

<<
<<

<KS

��

��)
)

)
)

)
)

)
)

)
)

)
)

y

ξ

AA��������

��<
<<

<<
<<

<

x

OO�
�
�
�
�
�
�

FIGURE 3. Placement and test as functions of true score and race

This corresponds with the decomposition

(5.1) π(yxξz) = π(y|xξz)π(x|ξz)π(ξ |z)π(z).

Although we refer to this model as a saturated model, it is different from the
model in Section 1. One of the variables in Figure 3 is unobserved (missing),
and although the model is saturated, it is sadly under-identified. In fact, we
can take whatever we want forξ and still fit the saturated model perfectly.
This means we have to fill in the missing information by making various
restrictive assumptions. They are needed to identify the model and to make
estimation possible.

First, there are some dotted arrows in Figure 3. We are interested in the
unsaturated model in which these arrows disappear. The arrow fromx to
y is missing, which means we assume there is nodirect effect of observed
test score on placement. Knowing the true score is enough. In systems in
which the teachers or counselors use the actual test score for placement this
assumption is probably false. In our example, and in general, there is no
way to falsify the assumption – we merely can talk about its plausability.
The most we can say, perhaps, is that it is in the psychometric tradition.

The same thing is true for the second dashed arrow, fromz to x. This
arrow, about which we will have to say more below, is very critical. It
says thatπ(x|ξz) = π(x|ξ), which means that the observed test score only



SLICING 7

depends on the true score, not on the group. This is obviously again solidly
in the psychometric tradition, but the plausibility of the assumption is highly
debatable. The whole issue of cultural or racial bias comes into play here.
Nevertheless we do make the assumption to identify our model.

With the two arrows deleted, our model becomes

(5.2) π(yxξz) = π(y|ξz)π(x|ξ)π(ξ |z)π(z).

This is still not enough in terms of assumptions. We have to make parametruic
assumptions on the distribution of the latent achievement variables, and again
we are guided by the psychometric tradition. We supposeπ(xξ |z) is bivari-
ate normal3 for each groupz. And we supposeπ(y|ξz) is given by a linear
probit model, i.e.

(5.3) π(1|ξz) = 8(α(z) + β(z)ξ),

which 8(•) the normal ogive. Both slopeβ(z) and interceptα(z) of the
regression of the probit of placement on the true score can differ for the two
groups.

Again, these assumptions are mostly made to make estimation possible.
They are classical, and they are the basis of test and latent trait theory, but
whether they are plausible or not is a matter of opinion.

We now study the model in a bit more detail. It follows from (5.2) that

(5.4) π(1|xz) =

∫
+∞

−∞

π(1|ξz)π(ξ |xz)dξ.

Sinceπ(xξ |z) is bivariate normal, it follows thatπ(ξ |xz) is normal as well.
After some routine, but tedious, manipulation we find

(5.5) π(1|xz) = 8

α(z) + β(z)E(ξ |xz)√
1 + β2(z)V(ξ |xz)

 .

Because of normality, we know that we can write

E(ξ |xz) = λ(z) + θ(z)x,(5.6a)

V(ξ |xz) = ω2(z),(5.6b)

which implies

(5.7) π(1|xz) = 8

{
α(z) + β(z)λ(z)√

1 + β2(z)ω2(z)
+

β(z)θ(z)√
1 + β2(z)ω2(z)

x

}
.

This is still a linear probit model, but the two slopes and two intercepts
are now functions of ten parameters. Thus we still have a serious case of

3We ignore the fact, for the moment, thatx in our data has been discretized.
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under-identification. The only way out of this problem is, of course, to make
additional assumptions.
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APPENDIX A. EVALUATION OF AN INTEGRAL

In this appendix we evaluate

(A.1) I(α, β)
1
=

∫
+∞

−∞

8(α + βx)φ(x)dx,

where8(•) andφ(•) are the standard normal cdf and pdf, respectively.
First,

(A.2) 8(α + βx) =

∫ α+βx

−∞

φ(y)dy =

∫ 0

−∞

φ(y + α + βx)dy.

Thus

(A.3) I(α, β) =

∫
+∞

−∞

∫ 0

−∞

φ(y + α + βx)dyφ(x)dx.

The quadratic form in the exponent is

(A.4) (y + α + βx)2
+ x2

=

(β2
+ 1)x2

+ 2β(y + α)x + (y + α2) =

(β2
+ 1)

(
x +

β(y + α)

β2 + 1

)2

+
(y + α)2

β2 + 1
.

Thus we arrive at

(A.5) I(α, β) =
1√

β2 + 1

∫ 0

−∞

φ

(
y + α√
β2 + 1

)
dy = 8

(
α√

β2 + 1

)
.

Also, by a simple linear change of variables, we have the more general result

(A.6)
∫

+∞

−∞

8(α + βx)φµ,σ 2(x)dx = 8

(
α + βµ√
β2σ 2 + 1

)
.
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APPENDIX B. SELECTION

In the previous section we made the assumptions

π(x|ξz) = π(x|ξ),(B.1)

π(xξ |z) is bivariate normal.(B.2)

In this section we work out the consequences of these assumptions. We do
this in more generality than is actually necessary, and we specialize to the
bivariate normal situation that interests us here at the end.

From (B.1)

(B.3) π(xξ |z) = π(x|ξ)π(ξ |z).

This implies for the expected values

(B.4a) E(x|z) = E(E(x|ξ)|z),

and for the variances

(B.4b) V(x|z) = E(V(x|ξ)|z) + V(E(x|ξ)|z).

Finally. for the covariances.

(B.4c) C(x, ξ |z) = C(ξ , E(x|ξ)|z).

Now assume linear homoscedastic regression ofx on ξ . Thus

(B.5a) E(x|ξ) = Aξ + b,

and

(B.5b) V(x|ξ) = D,

whereD does not depend onξ . This is weaker than assuming joint multi-
variate normality, but it leads to important simplifications. We find

E(x|z) = Aµ(z) + b,(B.6a)

V(x|z) = D + A6(z)A′,(B.6b)

C(x, ξ |z) = A6(z),(B.6c)

where we have usedµ(z)
1
= E(ξ |z) and6(z)

1
= V(ξ |z).

We can rewrite our results by introducing means and dispersions for the
total (marginal, unselected) population. Then

A = 6xξ6
−1
ξξ ,(B.7a)

b = µx − Aµξ ,(B.7b)

D = 6xx − 6xξ6
−1
ξξ 6ξx,(B.7c)
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and thus

E(x|z) = µx + 6xξ6
−1
ξξ (µ(z) − µξ ),(B.8a)

V(x|z) = 6xx − 6xξ6
−1
ξξ (6ξξ − 6(z))6−1

ξξ 6ξx,(B.8b)

C(x, ξ |z) = 6xξ6
−1
ξξ 6(z).(B.8c)

This is thePearson-Aitkin-Lawley Selection Theorem. The classical refer-
ences are Pearson [1903]; Aitkin [1934]; Lawley [1943-44]. Usually the
theorem is used in a slightly different fashion, to deduce the unknown mo-
ments of the unselected population from the known moments of the selected
population. Compare Birnbaum et al. [1950], for instance, for a clear dis-
cussion of its standard applications.

If we apply the theorem to a standard bivariate normal distribution, with
correlationρ, then

E(x|z) = ρµ(z),(B.9a)

V(x|z) = (1 − ρ2) + ρ2σ 2(z)),(B.9b)

C(x, ξ |z) = ρσ 2(z).(B.9c)

In our exampleρ is thereliability index, the square root of thereliability.
Thus the joint conditional distribution ofx andξ is

(B.10)

[
x|z
ξ |z

]
∼ N

{[
ρµ(z)
µ(z)

]
,

[
(1 − ρ2) + ρ2σ 2(z)) ρσ 2(z)

ρσ 2(z) σ 2(z)

]}
,

andπ(ξ |xz) is normal with mean

(B.11a) E(ξ |xz) =
(1 − ρ2)µ(z) + ρ2σ 2(z)x

(1 − ρ2) + ρ2σ 2(z))
,

and variance

(B.11b) V(ξ |xz) =
(1 − ρ2)σ 2(z)

(1 − ρ2) + ρ2σ 2(z))
.
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