MAJORIZATION IN MULTINORMAL MAXIMUM
LIKELIHOOD ESTIMATION

JAN DE LEEUW

1. Introduction

The deviancé of n observationsy; from a p-dimensional centered multi-
variate normal distributiony (0, X) is, except for constants which do not
depend on the parameters,

(1) /(2) = nlogdet(x) +tr £71S,
where
Al
o) S=_) Wy
i=1

is thesample dispersion matriXde assume, throughout, th&@is positive
definité?.

The problem we study is minimization @ (%) over subsets of the cone of
positive definite matrices. Alternatively, we also look at minimization of

(3) ¢(Q) 2 — logdet(Q) + tr S,

over subsets of the cone of positive definite matrices. This is basically the
same problem, except that in (1) the deviance is a function afdbariance
matrix =, while in (3) itis a function of theoncentration matrix2 = 1.

Remember that in both (1) and (3) the mat8is a known positive definite
matrix.

Date February 3, 2003.
Two times the negative log-likelihood.
2AIf itisn't, just addn=11.
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Multivariate analysis problems are often formulated slightly differently, by
writing the covariance matrix in the form?%, where bothr? andx € 4§
must be estimated. Now

1
f(0°%) = plogo? + logdet(T) + —tr 'S,
o

The minimum over? is attained a2 = p~—ltr £~1S, and this minimum
is equal to

£(6%%) = plogtr =~1S+ logdet(Z) + (p — plog p).
Thus, ignoring irrelevant constants, we can also study the problem of mini-
mizing
(4) #(T) 2 logdet() + plogtr =~1S

over X in some set of positive definite matrices.

1.1. Majorization. This paperis about majorization algorithms to minimize
loss functions such a$, g, andh. Majorization algorithms are iterative
algorithms, where in each iteration we find a majorization function and we
minimize it. The majorization function has to be chosen in such a way that
it is always above the loss function we are trying to minimize, except that
it touches the loss function at the current point. For details we refer to the
Appendix.

1.2. Unrestricted Optimization. If there are no restrictions ox, then the
maximum likelihood estimate is ju§. This is a classical result, we just
give a proof to illustrate our basic techniques.

Lemma 1. If A is a positive definite matrix an® is a real symmetric
matrix, then there a non-singular matrik and a diagonal matrixA such
that A=TT andB =TAT'.

Proof. Use the eigen-decompositidn= K ®2K’. DefineB = &~1K'BK 1,
and supposke A L’ is the eigen-decomposition & SetT S2KoL. Clearly
TT = A MoreoverTAT = KOLAL'®K' = KOBPK' = B. O

Theorem 2. f(X) > logdet(S) + p, with equality if and only iz = S.
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Proof. Suppose&: minimizesf. Then by the Lemma there is a non-singular
T and a positive definite diagonal such thatS = TT  andX = TAT'.
Thus

f(2) = logdet(S) + logdet(A) +tr A7t

p
= logdet(S) + ) _ (loghs + A57).
=1

Now logig + As_l has a minimum equal to 1 atequal to 1. This is easily
verified using derivatives. Thuk(X) > logdet(S) + p. O

2. Smoothness and Convexity

2.1. Convexity. The following resultis due to Ky Fan. See Beckenbach and
Bellman [1965, Chapter 2, Paragraph 9] or Magnus and Neudecker [1998,
Chapter 11, Section 22]. We give a proof using our basic lemma.

Theorem 3. logdet(X) is concave inz on P.

Proof.
logdet(a 1 + (1 — a)Ep) = logdet(@TAT + (1 —a)TT) =
= logdet(TT') + logdet(@A + (1 —a)l) =

= logdet(TT') + > "log(eri + (1 — ).
i=1

Because lo¢x) is concave on the positive half line
log(airi + (1 — @)) > alogA;
and thus

logdet(@ Xy + (1 — a)X2) > alogdet(X1) + (1 — ) logdet(Z2).

Theorem 4. tr ¥~1C is convex inz on 2.
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Proof.
tr@S1+(1—a)S) 1S=tr(@TAT +(1—-a)TT) 1S=
=tr@A+A—-a)) ITIsT T =

n 1 )
= Z —— G
— aki+(1-a)
with S=T-1CTT.
Becausex—1 is convex inx on the positive half-line, we see that
1 1
+ (1 - o),

- < o—
ali + (A —a) = A
and thus

tr(@Z;+ (1 —a)S) tS<atr 7S+ (1L —a)tr 257S.

Corollary 5. ¢(2) is convex ir2 on 2.
Proof. —logdet(2) is convex, andr QSis linear, and thus convex. [

2.2. Differentiation. A convenient text on matrix differentiation is Magnus
and Neudecker [1998]. It contains the results in this section. We state the
theorems and give the proofs in a slightly different form, using directional
or Gateaux derivatives.

Theorem 6.
logdet(X + €A) =

1
logdet(X) + etr T71A — Eeztr sTIATTIA 4 0(€?).

Proof.

logdet(X 4+ €A) = logdet(TT + eTAT') =
logdet(T T') + logdet(l + €A).
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Now

det(l +€A)=1+€> As+e®Y Y Asht+0(e?) =
S

s<t
1 2 2 2 2
- 1+EXS:,\S+§€ {(XS:AS) —ZS:AS}+O(E ),
and thus

1
logdet(l +€A) = GZ)\,S — 5622)@ + 0(e?) =
S S

1
—etr A — Eeztr A% + o(e?).

Becausex 'A = T-TAT’ we see thatr ©~1A = tr A and moreover
tr "TAZ 1A = tr A2, giving the required result. O

Theorem 7.

tr (Z+ea)1s=
tr 21S—etr TTIAS IS+ %tr =TIATTIAS IS+ 0(e)?.

Proof. Let S2 T-1ST-T. Then

tr (T 4+eA)IS=tr (I +eA) 1S=1tr (I —eA +€°A%>—...)S=
tr (S—eAS+e?A%S—...)=tr S—etr AS+€%tr A’S— ...

Nowtr S=tr 1S and usingt 1A = T-TAT’ we see immediately
thattr AS=tr 2 1AX 1S andtr A2S=1tr =-1A=1Ax®-1S O

3. Majorization

Theorem 8.

logdet(21) < logdet($2) +tr £,1(Z; — ),
logdet(Z1) > logdet(Xp) +tr =71, — 2).
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Proof. To prove the first inequality we use the mean value theorem in the
form

logdet(Z1) < logdet(Z,) + max tr (%1 + (1 - @) ) H(Z1 — )

Now, using the simultaneous diagonalization lemma,

p
X1+ (@—o3) H(C1-3) =)
s=1

s —1
ars+(1—a)’

which is an decreasing function @f Thus it attains its maximum at= 0.
It attains its minimum a& = 1, which proves the second inequafity [

It should be emphasized that for majorization the first inequality is the useful
one. It restates the well-known fact that a differentiable concave function
can be majorized by a linear function at any point (or, to put it differently, a
concave function is below any of its tangents). The second inequality is just
given for completeness.

Theorem 9.

tr oris<tr oyls—r 27z - 2y 37tS,
tr 271S>tr 215 -tr 243, - )55 tS.

Proof. The proof is very similar to that of Theorem 8, except that we now
have

tr @214+ (1—a)2) H(Z1— ) @1+ 11— o)) 1S=

i (hs — 1)&ss

(ahs + (1 —a)?’

s=1
whereS = T-1ST-T. Again, this is decreasing ia, which gives the

required result. O

3The second inequality can also be proved by interchandin@nd X2 in the first
inequality.
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In Theorem 9 it is the other way around, the second inequality is the useful
one. Itsays that a differentiable convex function can be minorized by a linear
function, and that a convex function majorizes all its tangents.

3.1. Quadratic Approximation. We will now try to extend the techniques
of the previous section to quadratic, instead of linear, majorization. We start
with

logdet(21) < logdet(S2) +tr £,1(S; — =,)—

—% min tr (@S;+(1-a),) IS - (@S +(1-a)T,) " H(Z;—,).

O<ax<1

Now clearly

tr @1+ (1 —-a)T) H(Z1—- 2)@T1+ (L —a)T2) (11— Tp) =
p

3 (hs — 1)?
[ars + (1 — )]?

s=1

Unfortunately the terms of this sum are decreasing if 1 andincreasing if
As < 1. Thusthe situtation is not as simple as it is with linear approximation.

A a(@Z1+ (L—a)E) Hr (21 — )2 =
1
A2 (@¥1+ (1—a)Xo)

min

tr (T — 2o)2

NOW Amin iS concave. Thus
1 1

2 @oit (A—a)%p) — @mn(E) + L= @)hmn(52)2

min

< MiNAmin(Z1), Amin(S2)) 2.
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Appendix A. Majorization Methods

A.1l. General Principles. The algorithms proposed in this paper are all
of the majorization type. Majorization is discussed in general terms in
de Leeuw [1994], Heiser [1995], Lange et al. [2000].

In a majorization algorithm the goal is to optimize a functip() over
0 € ©, with ® C RP. Suppose that a functiofn(9, &) defined on® x ®
satisfies

(5a) ¢O) >y, &) forallo, & e O,
(5b) d(0) =y (0,0)foralld € ©.

Thus, for afixed, ¥ (e, &) is belowg, and it toucheg at the point&, ¢ (£)).
We then say thap (9) majorizesy (0, &) or thaty (6, &) minorizesp (6).

There are two key theorems associated with these definitions.

Theorem 10. If ¢ attains its maximum o atd, theny (e, §) also attains
its maximum or® at é.

Proof. Supposey (6, 0) > (0, 0) for somed € ©. Then, by (5a) and
(5b), ¢ () = ¥(6,0) > ¥(H,0) = ¢(H), which contradicts the definition
of 6 as the maximizer op on ©. O

Theorem 11.1f § € ® andd maximizes) (e, 6) over®, theng (9) > ¢ ().

Proof. By (5a) we havep(d) > v (8, §). By the definition ofd we have
v(0,0) > ¥(@,60). And by (5b) we havey(6,6) = ¢(6). Combining
these three results we get the result. O

These two results suggest the following algorithm for maximizjii@).

Step 1:: Given a valu@® construct a minorizing functiogr (6, ).
Step 2:: Maximizey (0¥, &) with respect té. Setg*+D = gmax
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Step 3:: If ¢ (@KtD — $(@®| < € for some predetermined > 0
stop; else go to Step 1.

In order for this algorithm to be of practical use, the minorizing function
¥ needs to be easy to maximize, otherwise nothing substantial is gained by
following this route. Notice, that in case we are interested to minimize

we have to find a majorizing functiof that needs to be minimized in Step

2.

We demonstrate next how the idea behind majorization works with a simple
example.
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Figure 1: Majorization

Example 1. Thisis an artificial example, chosen for its simplicity. Consider
d(0) = 0% — 1002, § € R. Becaus®? > £2+ 26(0 — &) = 2660 — £2 we
see thaty (0, £) = 6% — 20£6 + 1052 is a suitable majorization function.
The majorization algorithm i+ = J/5¢.

The algorithm is illustrated in Figure A.1. We start wifi0) = 5. Then
¥ (0, 5) is the dashed function. It is minimized & ~ 2.924, where
v (W, 5) ~ 30.70, and ¢ (6Y) ~ —12.56. We then majorize by using the
dotted functiony (9, #D), which has its minimum at abo@t44, equal to
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about—21.79. The corresponding value @f at this point is about-24.1.
Thus we are rapidly getting close to the local minimum/&, with value
25. The linear convergence rate at this point%is

We briefly address next some convergence issues (for a general discussion
see the book by Zangwill [1969] and also Meyer [1976])¢ lis bounded
above (below) or®, then the algorithm generates a bounded increasing
sequence of function valuggo ¥, thusit converges tp(6°°). Forexample,
continuity of ¢ and compactness @ would suffice for establishing the
result. Moreover with some addiitonal mild continuity considerations we
get that||¢® — 9&+D|| — 0 [de Leeuw, 1990], which in turn implies,
because of a result by Ostrowski [1966], thatonverges either to a stable
point or to a continuum of limit points. Hence, majorization algorithms
for all practical purposes find local optima, and by starting the algorithm at
different initial values global optima can be located.
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