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1. Introduction

The deviance1 of n observationsyi from a p-dimensional centered multi-

variate normal distributionN (0, 6) is, except for constants which do not

depend on the parameters,

(1) f(6) = n logdet(6)+ tr 6−1S,

where

(2) S
1
=

1

n

n∑
i =1

yi y
′

i

is thesample dispersion matrix. We assume, throughout, thatS is positive

definite2.

The problem we study is minimization ofD(6) over subsets of the cone of

positive definite matrices. Alternatively, we also look at minimization of

(3) g(�)
1
= − logdet(�)+ tr �S,

over subsets of the cone of positive definite matrices. This is basically the

same problem, except that in (1) the deviance is a function of thecovariance

matrix6, while in (3) it is a function of theconcentration matrix� = 6−1.

Remember that in both (1) and (3) the matrixS is a known positive definite

matrix.

Date: February 3, 2003.
1Two times the negative log-likelihood.
2If it isn’t, just addn−1I .
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Multivariate analysis problems are often formulated slightly differently, by

writing the covariance matrix in the formσ 26, where bothσ 2 and6 ∈ S

must be estimated. Now

f(σ 26) = p logσ 2
+ logdet(6)+

1

σ 2
tr 6−1S.

The minimum overσ 2 is attained at̂σ 2
= p−1tr 6−1S, and this minimum

is equal to

f(σ̂ 26) = p log tr 6−1S+ logdet(6)+ (p − p log p).

Thus, ignoring irrelevant constants, we can also study the problem of mini-

mizing

(4) h(6)
1
= logdet(6)+ p log tr 6−1S

over6 in some set of positive definite matrices.

1.1. Majorization. This paper is about majorization algorithms to minimize

loss functions such asf , g, andh. Majorization algorithms are iterative

algorithms, where in each iteration we find a majorization function and we

minimize it. The majorization function has to be chosen in such a way that

it is always above the loss function we are trying to minimize, except that

it touches the loss function at the current point. For details we refer to the

Appendix.

1.2. Unrestricted Optimization. If there are no restrictions on6, then the

maximum likelihood estimate is justS. This is a classical result, we just

give a proof to illustrate our basic techniques.

Lemma 1. If A is a positive definite matrix andB is a real symmetric

matrix, then there a non-singular matrixT and a diagonal matrix3 such

that A = T T′ and B = T3T ′.

Proof. Use the eigen-decompositionA = K82K ′. DefineB̃
1
=8−1K ′BK8−1,

and supposeL3L ′ is the eigen-decomposition ofB̃. SetT
1
= K8L. Clearly

T T′
= A. MoreoverT3T ′

= K8L3L ′8K ′
= K8B̃8K ′

= B. �

Theorem 2. f (6) ≥ logdet(S)+ p, with equality if and only if6 = S.
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Proof. Supposê6minimizes f . Then by the Lemma there is a non-singular

T and a positive definite diagonal3 such thatS = T T′ and6̂ = T3T ′.

Thus

f (6̂) = logdet(S)+ logdet(3)+ tr 3−1

= logdet(S)+

p∑
s=1

(
logλs + λ−1

s

)
.

Now logλs + λ−1
s has a minimum equal to 1 atλ equal to 1. This is easily

verified using derivatives. Thusf (6) ≥ logdet(S)+ p. �

2. Smoothness and Convexity

2.1. Convexity. The following result is due to Ky Fan. See Beckenbach and

Bellman [1965, Chapter 2, Paragraph 9] or Magnus and Neudecker [1998,

Chapter 11, Section 22]. We give a proof using our basic lemma.

Theorem 3. logdet(6) is concave in6 onP .

Proof.

logdet(α61 + (1 − α)62) = logdet(αT3T ′
+ (1 − α)T T′) =

= logdet(T T′)+ logdet(α3+ (1 − α)I ) =

= logdet(T T′)+

n∑
i =1

log(αλi + (1 − α)).

Because log(x) is concave on the positive half line

log(αλi + (1 − α)) ≥ α logλi

and thus

logdet(α61 + (1 − α)62) ≥ α logdet(61)+ (1 − α) logdet(62).

�

Theorem 4. tr 6−1C is convex in6 onP .
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Proof.

tr (α61 + (1 − α)62)
−1S = tr (αT3T ′

+ (1 − α)T T′)−1S =

= tr (α3+ (1 − α)I )−1T−1ST−T
=

=

n∑
i =1

1

αλi + (1 − α)
c̃i i

with S̃ = T−1CT−T .

Becausex−1 is convex inx on the positive half-line, we see that

1

αλi + (1 − α)
≤ α

1

λi
+ (1 − α),

and thus

tr (α61 + (1 − α)62)
−1S ≤ αtr 6−1

1 S+ (1 − α)tr 6−1
2 S.

�

Corollary 5. g(�) is convex in� onP .

Proof. − logdet(�) is convex, andtr �S is linear, and thus convex. �

2.2. Differentiation. A convenient text on matrix differentiation is Magnus

and Neudecker [1998]. It contains the results in this section. We state the

theorems and give the proofs in a slightly different form, using directional

or Gateaux derivatives.

Theorem 6.

logdet(6 + ε1) =

logdet(6)+ εtr 6−11−
1

2
ε2tr 6−116−11+ o(ε2).

Proof.

logdet(6 + ε1) = logdet(T T′
+ εT3T ′) =

logdet(T T′)+ logdet(I + ε3).
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Now

det(I + ε3) = 1 + ε
∑

s

λs + ε2
∑ ∑

s<t

λsλt + o(ε2) =

= 1 + ε
∑

s

λs +
1

2
ε2

{(
∑

s

λs)
2
−

∑
s

λ2
s} + o(ε2),

and thus

logdet(I + ε3) = ε
∑

s

λs −
1

2
ε2

∑
s

λ2
s + o(ε2) =

= εtr 3−
1

2
ε2tr 32

+ o(ε2).

Because6−11 = T−T3T ′ we see thattr 6−11 = tr 3 and moreover

tr 6−116−11 = tr 32, giving the required result. �

Theorem 7.

tr (6 + ε1)−1S =

tr 6−1S− εtr 6−116−1S+ ε2tr 6−116−116−1S+ o(ε)2.

Proof. Let S̃
1
= T−1ST−T . Then

tr (6 + ε1)−1S = tr (I + ε3)−1S̃ = tr (I − ε3+ ε232
− · · · )S̃ =

tr (S̃− ε3S̃+ ε232S̃− · · · ) = tr S̃− εtr 3S̃+ ε2tr 32S̃− · · ·

Now tr S̃ = tr 6−1S, and using6−11 = T−T3T ′ we see immediately

thattr 3S̃ = tr 6−116−1S, andtr 32S̃ = tr 6−116−116−1S. �

3. Majorization

Theorem 8.

logdet(61) ≤ logdet(62)+ tr 6−1
2 (61 −62),

logdet(61) ≥ logdet(62)+ tr 6−1
1 (61 −62).
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Proof. To prove the first inequality we use the mean value theorem in the

form

logdet(61) ≤ logdet(62)+ max
0≤α≤1

tr (α61 + (1 − α)62)
−1(61 −62)

Now, using the simultaneous diagonalization lemma,

tr (α61 + (1 − α)62)
−1(61 −62) =

p∑
s=1

λs − 1

αλs + (1 − α)
,

which is an decreasing function ofα. Thus it attains its maximum atα = 0.

It attains its minimum atα = 1, which proves the second inequality3. �

It should be emphasized that for majorization the first inequality is the useful

one. It restates the well-known fact that a differentiable concave function

can be majorized by a linear function at any point (or, to put it differently, a

concave function is below any of its tangents). The second inequality is just

given for completeness.

Theorem 9.

tr 6−1
1 S ≤ tr 6−1

2 S− tr 6−1
1 (61 −62)6

−1
1 S,

tr 6−1
1 S ≥ tr 6−1

2 S− tr 6−1
2 (61 −62)6

−1
2 S.

Proof. The proof is very similar to that of Theorem 8, except that we now

have

tr (α61 + (1 − α)62)
−1(61 −62)(α61 + (1 − α)62)

−1S =

p∑
s=1

(λs − 1)s̃ss

(αλs + (1 − α))2
,

where S̃ = T−1ST−T . Again, this is decreasing inα, which gives the

required result. �

3The second inequality can also be proved by interchanging61 and62 in the first

inequality.
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In Theorem 9 it is the other way around, the second inequality is the useful

one. It says that a differentiable convex function can be minorized by a linear

function, and that a convex function majorizes all its tangents.

3.1. Quadratic Approximation. We will now try to extend the techniques

of the previous section to quadratic, instead of linear, majorization. We start

with

logdet(61) ≤ logdet(62)+ tr 6−1
2 (61 −62)−

−
1

2
min

0≤α≤1
tr (α61+(1−α)62)

−1(61−62)(α61+(1−α)62)
−1(61−62).

Now clearly

tr (α61 + (1 − α)62)
−1(61 −62)(α61 + (1 − α)62)

−1(61 −62) =

p∑
s=1

(λs − 1)2

[αλs + (1 − α)]2
.

Unfortunately the terms of this sum are decreasing ifλs > 1 and increasing if

λs < 1. Thus the situtation is not as simple as it is with linear approximation.

λ2
max((α61 + (1 − α)62)

−1)tr (61 −62)
2

=

1

λ2
min(α61 + (1 − α)62)

tr (61 −62)
2.

Now λmin is concave. Thus
1

λ2
min(α61 + (1 − α)62)

≤
1

(αλmin(61)+ (1 − α)λmin(62))2
≤ min(λmin(61), λmin(62))

−2.
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Appendix A. Majorization Methods

A.1. General Principles. The algorithms proposed in this paper are all

of the majorization type. Majorization is discussed in general terms in

de Leeuw [1994], Heiser [1995], Lange et al. [2000].

In a majorization algorithm the goal is to optimize a functionφ(θ) over

θ ∈ 2, with 2 ⊆ Rp. Suppose that a functionψ(θ, ξ) defined on2 × 2

satisfies

φ(θ) ≥ ψ(θ, ξ) for all θ, ξ ∈ 2,(5a)

φ(θ) = ψ(θ, θ) for all θ ∈ 2.(5b)

Thus, for a fixedξ ,ψ(•, ξ) is belowφ, and it touchesφ at the point(ξ, φ(ξ)).

We then say thatφ(θ) majorizesψ(θ, ξ) or thatψ(θ, ξ) minorizesφ(θ).

There are two key theorems associated with these definitions.

Theorem 10. If φ attains its maximum on2 at θ̂ , thenψ(•, θ̂ ) also attains

its maximum on2 at θ̂ .

Proof. Supposeψ(θ̃, θ̂ ) > ψ(θ̂, θ̂ ) for someθ̃ ∈ 2. Then, by (5a) and

(5b),φ(θ̃) ≥ ψ(θ̃, θ̂ ) > ψ(θ̂, θ̂ ) = φ(θ̂), which contradicts the definition

of θ̂ as the maximizer ofφ on2. �

Theorem 11. If θ̃ ∈ 2 andθ̂ maximizesψ(•, θ̃ ) over2, thenφ(θ̂) ≥ φ(θ̃).

Proof. By (5a) we haveφ(θ̂) ≥ ψ(θ̂, θ̃ ). By the definition ofθ̂ we have

ψ(θ̂, θ̃ ) ≥ ψ(θ̃, θ̃ ). And by (5b) we haveψ(θ̃, θ̃ ) = φ(θ̃). Combining

these three results we get the result. �

These two results suggest the following algorithm for maximizingφ(θ).

Step 1:: Given a valueθ (k) construct a minorizing functionψ(θ (k), ξ).

Step 2:: Maximizeψ(θ (k), ξ) with respect toξ . Setθ (k+1)
= ξmax.
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Step 3:: If |φ(θ (k+1)
− φ(θ (k)| < ε for some predeterminedε > 0

stop; else go to Step 1.

In order for this algorithm to be of practical use, the minorizing function

ψ needs to be easy to maximize, otherwise nothing substantial is gained by

following this route. Notice, that in case we are interested to minimizeφ,

we have to find a majorizing functionψ that needs to be minimized in Step

2.

We demonstrate next how the idea behind majorization works with a simple

example.
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Figure 1: Majorization

1

Example 1. This is an artificial example, chosen for its simplicity. Consider

φ(θ) = θ4
− 10θ2, θ ∈ R. Becauseθ2

≥ ξ2
+ 2ξ(θ − ξ) = 2ξθ − ξ2 we

see thatψ(θ, ξ) = θ4
− 20ξθ + 10ξ2 is a suitable majorization function.

The majorization algorithm isθ+
=

3
√

5ξ .

The algorithm is illustrated in Figure A.1. We start withθ(0) = 5. Then

ψ(θ,5) is the dashed function. It is minimized atθ (1) ≈ 2.924, where

ψ(θ (1),5) ≈ 30.70, andφ(θ (1)) ≈ −12.56. We then majorize by using the

dotted functionψ(θ, θ (1)), which has its minimum at about2.44, equal to
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about−21.79. The corresponding value ofφ at this point is about−24.1.

Thus we are rapidly getting close to the local minimum at
√

5, with value

25. The linear convergence rate at this point is1
3.

We briefly address next some convergence issues (for a general discussion

see the book by Zangwill [1969] and also Meyer [1976]). Ifφ is bounded

above (below) on2, then the algorithm generates a bounded increasing

sequence of function valuesφ(θ (k), thus it converges toφ(θ∞). For example,

continuity of φ and compactness of2 would suffice for establishing the

result. Moreover with some addiitonal mild continuity considerations we

get that||θ (k) − θ (k+1)
|| → 0 [de Leeuw, 1990], which in turn implies,

because of a result by Ostrowski [1966], thatθ converges either to a stable

point or to a continuum of limit points. Hence, majorization algorithms

for all practical purposes find local optima, and by starting the algorithm at

different initial values global optima can be located.
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