
THE SPEARMAN MODEL

JAN DE LEEUW

1. SPEARMAN STRUCTURES

SupposeY is a linear space with inner product< •, • > and with unit

sphereS
1
={y ∈ Y |< y, y >= 1}.

Definition 1.1. Sequence{y j ∈ Y}1≤ j ≤m is aSpearman sequenceif there
exist

• u ∈ S,
• {ej ∈ S}1≤ j ≤m,
• {α j ∈ R}1≤ j ≤m,
• {δ j ∈ R}1≤ j ≤m,

such that

• y j = α j u + δ j ej for all 1 ≤ j ≤ m,
• < u, ej >= 0 for all 1 ≤ j ≤ m,
• < ej , è >= 0 for all 1 ≤ j < ` ≤ m.

Definition 1.2. A real symmetric matrixC of orderm is aSpearman matrix
if there exist

• {α j ∈ R}1≤ j ≤m,
• {δ j ∈ R}1≤ j ≤m,

such that

c j ` =

{
α2

j + δ2
j for all 1 ≤ j ≤ m,

α j α` for all 1 ≤ j 6= ` ≤ m.

2. FUNDAMENTAL THEOREM OFFACTOR ANALYSIS

2.1. Existence.

Theorem 2.1. If {y j ∈ Y}1≤ j ≤m is a Spearman sequence, then C with
elements cj ` =< y j , y` > is a Spearman matrix. Conversely, if C is a
Spearman matrix, then there exists a Spearman sequence{y j ∈ Y}1≤ j ≤m
with cj ` =< y j , y` >.

Proof. The first part is a simple calculation. �
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2.2. Indeterminacy.

3. PROPERTIES OFSPEARMAN MATRICES

3.1. Canonical Form.

Definition 3.1. A Spearman matrix isregular if

• α j > 0 for all 1 ≤ j ≤ m,
• δ2

1 > δ2
2 > · · · > δ2

m.

A regular Spearman matrix iscompleteif δ2
m > 0, otherwise it isincom-

plete.

Theorem 3.1.Each Spearman matrix is (orthogonally) similar to the direct
sum of a regular Spearman matrix and a diagonal matrix.

Proof. We first permute rows and columns of the Spearman matrixC such
that those with bothα j = 0 andδ2

j = 0 come last. Suppose there arem00

of these.
Then permute again so that the, say,m01 rows and columns withα j = 0

andδ2
j > 0 come before these. We then have

C ∼

C̃ 0 0
0 1̃2 0
0 0 0

 .

Now look at the submatrix̃C, for which allα j 6= 0. Permute again to make
the δ2

j non-increasing along the diagonal. Suppose theδ2
j haver different

values, and that valueδ2
s has multiplicityks. Write αs for the subvector of

α corresponding toδ2
s.

Construct ther orthonormal matricesLs, of orderks, whose first columns
are equal toαs/‖αs‖, and whose remaining columns are orthogonal toαs,
and to each other. PremultiplỹC with the direct sum of theLs, and again
permute rows and columns to obtain

(1) C̃ ∼

[
C 0

0 1
2

]
.

HereC is of orderr and has elements

cst =

{
‖αs‖

2
+ δ2

s for all 1 ≤ j ≤ r,

‖αs‖‖αt‖ for all 1 ≤ s 6= t ≤ r.
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Moreover1
2

is diagonal, withr diagonal blocks, where blocks of order
ks − 1 has all diagonal elements equal toδ2

s. Thus

C ∼


C 0 0 0

0 1
2

0 0
0 0 1̃2 0
0 0 0 0

 ,

and becauseC is a regular Spearman matrix this completes the proof.�

3.2. Determinant. Because of Theorem 3.1 it clearly suffices to compute
the determinant of a regular Spearman matrix.

Theorem 3.2.Regular Spearman matrices are non-singular (and thus pos-
itive definite).

Proof. This is trivial for complete Spearman matrices. An incomplete Spear-
man matrixC can be written as

C =

[
12

m + αmα′

m αmαm

αmα′

m α2
m

]
,

where12
m is 12 with its last row and column deleted, andαm is α with its

last element deleted. IfCx = 0 then we can suppose without loss of gener-
ality thatxm = 1 (we cannot havexm = 0 because the leading submatrix of
c is complete and thus nonsingular). Now

x′Cx = x′

m12
mxm + (x′

mαm + αm)2.

The first term can only be zero ifxm = 0, but then the second term is
non-zero, becauseαm is non-zero. �

Theorem 3.3.A complete Spearman matrix C= αα′
+12 has determinant

det(C) = det(12)(1 + α′1−2α).

An incomplete Spearman matrix has determinant

det(C) = α2
mdet(12

m).

Proof. For a complete Spearman matrix, we twice apply the classical theo-
rem?? on partitioned determinants (or Schur complements) to the matrix

D =

[
12 α

−α′ 1

]
.

This givesdet(D) = det(12)(1+α′1−2α) = det(1)det(12
+αα′), which

proves the first part.
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The second part follows by taking the limit ifδ2
m → 0. Using the notation

in the proof of Theorem 3.2,

det(C) = δ2
mdet(12

m)(1 + α′

m1−2
m αm +

α2
m

δ2
m

) =

= det(12
m)(δ2

m(1 + α′

m1−2
m αm) + α2

m),

which obviously has the limit in the theorem.
Alternatively, we can use the partitioning used in the proof Theorem 3.2

and apply the partitioned determinant result to show that

det(12
+ αα′) = α2

mdet(12
m + αmα′

m −
αmαmαmα′

m

α2
m

) = α2
mdet(12

m).

�

3.3. Inverse.

3.4. Eigenvalues.HH
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