THE SPEARMAN MODEL

JAN DE LEEUW

1. SSEARMAN STRUCTURES

Supposéy is a linear space with inner produet e, ¢ > and with unit
spheres$ é{y eYl<y,y>=1}.
Definition 1.1. Sequencgy; € %}1<j<m IS aSpearman sequendethere
exist
elucis,
o {6 € Sti<j<m:
o {aj € Rlicj<m,
° {5j € R}lgjfm,
such that
e yj=aju+tdjeforalll<j<m,
e <u,g >=0foralll<j<m,
e <gj,g>=0foralll<j<f<m

Definition 1.2. A real symmetric matrixC of ordermis aSpearman matrix
if there exist
o {aj € Rli<j<m,
o {3j € Rlicj<m,
such that
o af +6% foralll<j<m,
7 o foralll<j #¢<m.

2. FUNDAMENTAL THEOREM OFFACTOR ANALYSIS

2.1. Existence.

Theorem 2.1.1f {y; € Y}i<j<m iS @ Spearman sequence, then C with
elements ¢ =< yj,y, > is a Spearman matrix. Conversely, if C is a
Spearman matrix, then there exists a Spearman sequgmoe Y}i<j<m
with cjp =< Yj, Ye >.

Proof. The first part is a simple calculation. O
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2.2. Indeterminacy.

3. PROPERTIES OFSPEARMAN MATRICES

3.1. Canonical Form.

Definition 3.1. A Spearman matrix isegular if
eaj>0foralll<j<m,
08%>8§>-~>5r2n.
A regular Spearman matrix sompleteif §2, > 0, otherwise it isncom-
plete

Theorem 3.1.Each Spearman matrix is (orthogonally) similar to the direct
sum of a regular Spearman matrix and a diagonal matrix.

Proof. We first permute rows and columns of the Spearman m@tisxich
that those with botl; = 0 and(Sj2 = 0 come last. Suppose there angy
of these.

Then permute again so that the, sag; rows and columns witkrj = 0
anda‘}z > 0 come before these. We then have

C 0 O
C~|0 AZ 0
0 0 O

Now look at the submatri&, for which allaj # 0. Permute again to make
the 8j2 non-increasing along the diagonal. Suppose&]?hbaver different

values, and that valuﬁ has multiplicityks. Write as for the subvector of
« corresponding té2.

Construct the orthonormal matriceks, of orderks, whose first columns
are equal tars/||as||, and whose remaining columns are orthogonatdo
and to each other. Premultipy with the direct sum of thé.s, and again
permute rows and columns to obtain

. (o)
1 C ~ _o .
(1) [O Az}
HereC is of orderr and has elements

st —

~ Jlosl®+82 foralll<j<r,
loslllloe]l  foralll<sz#t<r.
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MoreoverA~ is diagonal, withr diagonal blocks, where block of order
ks — 1 has all diagonal elements equabfo Thus

C 0 O
—2
C~0A~OO,
0 0 A2 0
0 0 0 O

and becaus€ is a regular Spearman matrix this completes the proof]

3.2. Determinant. Because of Theorem 3.1 it clearly suffices to compute
the determinant of a regular Spearman matrix.

Theorem 3.2.Regular Spearman matrices are non-singular (and thus pos-
itive definite).

Proof. Thisis trivial for complete Spearman matrices. An incomplete Spear-
man matrixC can be written as

2

2 /
C = [Am + Ay O‘m“m]
= i ,
Uiy Om

WhereA2m is A2 with its last row and column deleted, aag is o with its
last element deleted. @ x = 0 then we can suppose without loss of gener-
ality thatx,, = 1 (we cannot have,, = 0 because the leading submatrix of
c is complete and thus nonsingular). Now

/ 5 A2 / 2
X'CX = xmAmxm + (Xmo‘m + am)©.

The first term can only be zero ¥» = 0, but then the second term is
non-zero, becausay, is Non-zero. O

Theorem 3.3.A complete Spearman matrix-€ aa’+ A2 has determinant
det(C) = det(A%)(1 + o' A~ %).
An incomplete Spearman matrix has determinant
det(C) = o2 det(A2).

Proof. For a complete Spearman matrix, we twice apply the classical theo-
rem?? on partitioned determinants (or Schur complements) to the matrix

A2
o-[ 2 4]
This givesdet(D) = det(A2)(1+a’ A %) = det(1)det(A2+aa’), which
proves the first part.
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The second part follows by taking the Iimitaﬁ] — 0. Using the notation
in the proof of Theorerp 32,

2
det(C) = 82 det(AZ)(1 + oA Zam + z—?) =
m

= det(AZ) (82 (1 + ajpArlam) + o),

which obviously has the limit in the theorem.
Alternatively, we can use the partitioning used in the proof Thegrein 3.2
and apply the partitioned determinant result to show that
/
(07531040 1a 0 20
——— M) = gfdet(AZ).
Om

det(A® + aa’) = afdet(AZ + omapy —

O
3.3. Inverse.
3.4. Eigenvalues. HH
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