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1. REGRESSION

In regression wesmoothan observed vector of outcomesy by replacing

it by ŷ = Py, whereP is a projector. UsuallyP = X(X′X)+X′, with X a

matrix of predictors. Most users of regression analysis are more interested

in the regression coefficientŝb = (X′X)+X′y, because regression coeffi-

cients can be discussed in causal terms. We avoid that can of worms by

concentrating on̂y, and thinking of it as a result of smoothing.

There are other reasons to avoid regression coefficients. They tend to be

numerically unstable and their value depends heavily on the way the predic-

tors arenormalized(or, more generally,expressed). The ŷ are coordinate-

free, in the sense that replacingX by XT gives the samêy, no matter what

the (non-singular)T is.

Another important component of any regression analysis is to come up

with information about thestability of the computed quantities. This can

be done in a number of different ways. For a fairly general framework, we

refer to?, Chapter 1.

2. STATISTICS: L INEAR MODEL

Statisticians study the stability of the outcomes of regression analysis

by assuming that the vector ofn observationsy is a realizationof an n-

dimensional random vectory.

Moreover we assume that the expectationµ
1
= E(y) satisfiesµ = Pµ

and the dispersion6
1
= E{(y − µ)(y − µ)′} satisfies6 = σ 2I . Thus the

elements ofy are uncorrelated and they all have the same variance. And the

means satisfy the model, i.e.µ̂ = µ. Very often we also assume thaty has

a multivariate normal distribution, which we write asy ∼ N (µ, 6),
1
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Observe we haveonly one realizationof the random variabley. Once us

statisticians have these assumptions out of the way, we start doing regression

calculations on the hypothetical random variables, not on the observations.

Thus we computêy = P y, and we can now study the distribution ofŷ under

the model. The expectation is clearlyPµ = µ and the dispersion matrix is

σ 2P.

Statisticians also compute the residualsr̂ = y − ŷ = Qy, whereQ =

I − P. ClearlyE(r̂ ) = 0 and

E(r̂ r̂ ′
) = QE(yy′)Q = Q(σ 2I + µµ′)Q = σ 2Q,

and for the sum of squares of the residuals (or theresidual sum of squares)

we have

E(r̂ ′r̂ ) = σ 2(n − p),

wherep = rank (P) = tr (P). Moreover

E(r̂ r̂ ′
) + E{(ŷ − µ)(ŷ − µ)′} = σ 2Q + σ 2P = σ 2I = E{y − µ)(y − µ)′}

If y is normal, then so arêyandr̂ . Moreover̂r ′r̂ /σ 2 and(ŷ−µ)′(ŷ−µ)/σ 2

are independent central chi-squares withn− p andp−1 degrees of freedom,

and these facts can be used to derivet andF distributions for various ratios.

This is all excruciatingly beautiful and the calculations seem to be easy

to understand. But what does it all mean ? Where did the real world go ?

3. STATISTICS: FREQUENTISTS

What do we mean if we assume that our observations are realizations

of random variables ? Frequentists interpret this as meaning that if we

(hypothetically) replicate our experiment an infinite number of times, then

the different independent realizations of the vectory will have a (normal)

distribution with meanµ = Pµ and dispersion matrix6 = σ 2I .

Observe thatactual replications are not directly relevant for this model.

Such replications do not provide different realizations of the same random

variable, they provide realizations of additional random variables with the

same distribution as the previous one.

Three obvious remarks must be made here. In the first place, there is no

way in which we can possibly verify this model, even approximately. We
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only have one realization of our multinormal random variable, and the hy-

pothetical infinitereplication frameworkis just that, hypothetical. It cannot

be realized, so it cannot be tested. In short, it’s metaphysics.

The second remark is that even if, by adopting some godlike features, we

could observe the hypothetical replication framework, we would undoubt-

edly find that the model for this replication framework was radically and

unrepairably wrong. If we do the thought experiment of replicating our

study a large number of times, in our heads, then in almost all conceivable

situations believing that the outcome will be what the linear model prescribes

is just plain silly.

And then, in the third place, there are many experiments, especially in the

social and behavioral sciences, that cannot be replicated at all, not even hy-

pothetically in our heads. There is no conceivable framework of replication,

because we study a situation which is essentially unique.

4. STATISTICS: BAYESIANS

5. STATISTICS: M INIMAL MODEL

y z ŷ ẑ

y 0

z 26 0

ŷ Q6Q + Qµµ′Q 6 + P6P + Qµµ′Q 0

ẑ 6 + P6P + Qµµ′Q Q6Q + Qµµ′Q 2P6P 0

µ 6 6 P6P + Qµµ′Q P6P + Qµµ′Q

y z ŷ ẑ

y 0

z 2σ 2I 0

ŷ σ 2Q + Qµµ′Q σ 2(I + P) + Qµµ′Q 0

ẑ σ 2(I + P) + Qµµ′Q σ 2Q + Qµµ′Q 2σ 2P 0

µ σ 2I σ 2I σ 2P + Qµµ′Q σ 2P + Qµµ′Q
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y z ŷ ẑ

y 0

z 2σ 2I 0

ŷ σ 2Q σ 2(I + P) 0

ẑ σ 2(I + P) σ 2Q 2σ 2P 0

µ σ 2I σ 2I σ 2P σ 2P

6. STABILITY

6.1. Error Analysis. Suppose we study the effect of uncertainty in the

outcomesyi . One way to do this is to codify uncertainly as the inequalities

y−

i ≤ yi ≤ y+

i . The question is how thêyi vary if the yi vary in these

uncertainty intervals. Now usingŷ = Py we see that∑
{pik y−

k | pik > 0} +

∑
{pik y+

k | pik < 0} ≤ ŷi ≤∑
{pik y+

k | pik > 0} +

∑
{pik y−

k | pik < 0}.

These are easily computed upper and lower bounds for the predicted values.
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