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1. INTRODUCTION

Principal Component Analysis (PCA) and Factor Analysis (FA) methods for ma-
trices of zeroes and ones were discussed in De Leeuw [2003a,b]. Methods based
on correspondence analysis, on least squares multidimensional scaling, and on
Bernoulli likelihood were distinguished. The likelihood methods minimize the
deviance, which is a function of the form

n

m

(1) D(A,B) =—) " logF(gj(a,bj)),

i=1 j=1
where(a, b) is the inner productF is a known one-dimensional cdf such as the
standard normal or the standard logistic, @yds the binary data, linearly trans-
formed to+1. Geometrically, minimizing this loss function means we represent
the row as points, and the columns as hyperplanes optimally separating points cor-
responding to the zeroes in the column from those corresponding to the ones.

If the number of columns is small compared to the number of rows then the geom-
etry tells us the location of the row points will be not very well determined, and in
particular row points can be moved to infinity along directions of recession. The
minimum will not be attained. In statistical terminology this happens because there
are too many incidental parameters (#hén Equation|(1)).
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On common solution to this problem is to assumedhare realizations of a ran-
dom vector, with distributiois, and to minimize the marginal deviance

@  D(B.G)=-Y log [ e} logF (g a.b)dG@.
i=1 j=1

We can distinguish two special cases here. In the first Gaseompletely known,

for instance we set it to the multivariate standard normal, and in the secon@case
is completely unknown, except for the fact that it must be a cdf. In this second case
we minimize the marginal deviance over bddhand G. Obviously there could

be intermediate cases, in whi€his partially known, but we do not discuss these
here.

The problem we study in this article has both (1) (2) as special cases. We
minimize marginal deviances of the form

3) D(B,G) = —Zlog/exp{ZIog F (g (a, b;))}dGi(a).
i=1 j=1

Thus each row has its own c@;, which can again be either completely known or
completely unknown.

This integral is studied in component or factor analysis of binary matrices, for
instance in the item response theory of educational statistics [McDanald, 1997;
Reckasg|, 1997] and in the roll call analysis of political science [Clinton et al.,
2003]. In recent publications, the minimization problem is often solved by using
some form of Monte Carlo method, often by Markov Chain Monte Carlo [Meng
and Schilling, 1996 Beguin and Glas, 2001; Jackman, [2001]. In this paper we
study some alternative minimization methods basedhajorization(also known
asvariational bounding.

These methods are not necessarily superior to MCMC. They do guarantee conver-
gence from any starting point and a monotone decreasing sequence of loss func-
tion values®. Thus one would at least expect the convergence is more regular
and somewhat easier to monitor than MCMC convergence. Moreover each step of
the algorithm computes the partial singular value decomposition (SVD) of a ma-
trix, which can be done efficiently in interpreted languages with fast linear algebra
routines, such as R or Matlab. And finally initial convergence of our majoriza-
tion algorithms is extremely fast, which means that, at the very least, they provide
excellent initializers for other algorithms.
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2. SNGLE STEPG;
SupposeG; (a) steps from zero to one at an unknoan Then loss function (3)

becomes loss functiof](1), and we are in the situation discussed in detail in De
Leeuw [2003b]. We repeat the key result here.

Suppose we have a variational bound of the form

1
(4) —log F(x) < ~log F(y) + h(y)(x = y) + Sw(y)(x - y)%.

for all x andy, with equality if and only ifx = y. Observe that by completing the
square we can also writg|(4) as

1h?
(5a) —logF(x) < —logF(y) + w(y)(x —2(y)* — ((;/))
where
(5b) 29 =y - "0
w(y)

Specific instances of such bounds for a logistic and normakFcdife given irj Dg
Leeuw [2003b].

The bounds can be used to implement a simple majorization algorithm. Start with
someA©@ andB©, SupposeA™ andB™ are the current best solution. We update
them to find a better solution in two steps, similar to the E-step and the M-step in
the EM-algorithm.

Algorithm 2.1 (Majorization)

Stepv(1): Compute the matrices W, H®and Z with elements

Ij = w(q” (aI(V) b(v)»

hl” =h(; @". b)),
h(v)
|(])—<ai()’ bj )> q” (V)
Wij
Stepv(2): Solve the least squares matrix approximation problem

mmZZw(”)( a.by) —z")?

i=1j=1

by using the (weighted) SVD. This give$*A and B"*Y.
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Theorem 2.1. (1) The Majorization Algorithm 2]1 produces a decreasing se-
quenceD (A™, B™) of loss function values.
(2) A necessary condition for a minimum of the loss functimt (A, B) is
that the algorithm is stationary gtA, B).
(3) All accumulation points of the sequenc&", B™) of iterates are station-
ary points of the algorithm.

Proof. Substituteg; (a;., bj) for x andg; (3", b"”) for y in Equation[(5). Then

1 ( (V))Z

2 wi<ju>

1 vV vV
+ Swi (&, by) — Z)

— log F (gij (&, bj)) < —log F (q; (&, b}u)»

Now sum oveii andj to obtain

h(V)
D(A, B) < DA™, BY) — ZZ "(V)
i=1 j=1 i
L nm
+§ Zw(V)( a| bJ (v))z
i=1 J:l

The right hand side of this inequality, which we can writeSa#\, B; A, BM™),
is the majorization function. It is minimized ovéy and B, producingA®*? and
B™+V. Now

i)(A(”+l), B(V+1)) < S(A(”+1), B(V—i-l); A(”), B(v)) <
< 8(A(”), B(V); A(V), B(V)) — JD(A(V), B(V))
This proves the first part of the theorem.

The second part also follows directly. (A, B) is a minimizer, and the algorithm
is not stationary atA, B), then we can updat@A, B) to a solution with a lower
function value, which contradicts the assumption {#&tB) is the minimum.

For the third part we apply general results on majorization given, for instaricel, in De
Leeuw [1994][ Heiser [1995]; Lange etlal. [2000]. O

For implementation details we refer[to De Leeuw [2003b]. The most important
choice we have to make is how to compute the weighted SVD. We can apply
majorization once again, as(in Groenen €t/al. [2003], to arrive at an unweighted
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SVD. We can also use alternating least squares (a.k.a. criss-cross regression or
NILES/NIPALS) iterations, as in Wold [1966&,b]; Daugavet [1968]. These alter-
nate updatingA for fixed B and B for fixed A, which are both linear regression
problems, any number of times within on e major iteration. Alternatively, we can
also choose to use a uniform majorization, in whicty) is independent of. This

leads directly to an unweighted SVD.

3. MULTIPLE STEPG;

Let us assume that th®; are step functions, steppingat. We must distinguish

two cases. In the first the location and the size of the steps are unknown. This
occurs if we try to approximate an unknovd by a step function. It also occurs if

we optimize over all cdf'$5;, because the optimul@; in that case will be a step
function [Rustagi, 1976, Chapter IV]. The second case has known location and size
of steps. This occurs if we approximate an integral by a linear quadrature formula,
such as a product form of the Gauss-Hermite rule or a quasi-Monte Carlo rule.

We will outline the algorithm for the case in which the steps are unknown. Modifi-
cations for known steps are obvious. To simplify notation we assume that we have
the same number of steps for eaclJsing the step function representation we can
write

n K m
(6) D(A. B.m)=—) log)  mxexp(y_logF (g (ak. bj)}.
i=1 k=1 j=1
This loss function must be minimized ové&rand B andr, for various values of
bothK andp. We also need some convenient abbreviations. Define

Oik(A, B, ) = mik exp{y_ log F (dij (@i, bj))},
j=1

and
_ Oik (A, B, )

N GI*(A, Bv T[) ,
where we use the convention of replacing an index over which we have summed
by a star. Thus, for instance,

Sik(Av B’ 7T)

n
D(A.B.7m)=—) logbi.(A, B, ).
i=1
The algorithm in this case starts with som€, B@ andzr©. SupposeA”, (B
andz ™ are the current best solution. We update them to find a better solution in
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three steps, using majorization twice. The first majorization is based on Jensen’s
inequality, it is the same as the majorization used in the EM algorithm. The second
majorization is based on the quadratic bound in Equafipn (4).

Algorithm 3.1 (Majorization)

Stepv(1): Compute the arrays W, H™and Z") with elements
wiy = w(g; @y, b)),
hij = h(a; (ai’. b)),
®
v v v |
Zje = (@, b)) — g —).
ik

Also compute the matrices

0 = Oi(A”, B, ™),
Sk = &i(AV, BY, 2),

and the composite weighig,) = &3 w},.
Stepv(2): Solve the least squares matrix approximation problem

K m
Tigz Z U.(,k(zfﬁz (@i, bj))?

by using the (weighted) SVD. This give$*A and B"*Y.
Stepv(3): Updater by

(V+l) S(V)
ik -

Theorem 3.1. (1) The Majorization Algorithm 3]1 produces a decreasing se-
quenceD (A™, BV, ™) of loss function values.
(2) A necessary condition for a minimum of the loss functidat (A, B, )
is that the algorithm is stationary &, B, 7).
(3) All accumulation points of the sequenc&™, B™, 7)) of iterates are
stationary points of the algorithm.
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Proof. By Jensen’s inequality

6,.(A, B, ) 0 Oik(A, B, ) _
lo 6. (AW, BV, z0) Z& R =
(v) 0|k(A, Bv T[)
Z$| I (U) )
O
and thus
n
(7) D(A B,m) < DAY, B, 7))+ > "> & logsyy’
i=1 k=1
n K n K m
=YD & ogmic— Y Y EY " log F (g (@i b))
i—1 k=1 i—1 k=1  j=1

Equation [(¥) is the first majorization, which shows us how to optimize avey
decrease the loss. We now use the variational bound to majorize and simplify the
last term of Equatiorf {7). By Equation] (4)

n K m
® —Y. ) &’ logF(gj(ax, b)) <

i=1 k=1 j=1

n K
IS Z log F (qi; (a, b)) —

i=1 k=1 j=1
m U) 2 n K
v) ( jk) 1

K m
DK D 3 DD (@i by) = Z)2

1 j=1 ijk i=1 k=1 j=1

1 n
2
i=1

=
[l

Combining Equation$ [7) and|(8) gives us the final majorization, and shows us how
to updateA andB.

The other statements in the Theorem follow in the same way as in the proof of
Theoreni 2.11. O

In an important special case we require@]lto be the same. Writax andy for
the steps. Define
W) )
—(v) ZI =11 |JkZ|]Uk

ik =
*jk
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By completing the square in the last term of Equat|dn (8) we see that

1 n K m
9 5222 Mm@ by = zj)? =
1 m
=32 2 nik@e by) — )y ZZn.ﬁ”ﬁ Zje —Z))°

k=1 j=1 i=1 k=1
Thus we updaté and B by minimizing
1 K m
52 > @ by) — 7))
k=1 j=1
and we update by
(4D _ %Sfﬁ)

4. QUADRATURE

If we use a linear quadrature rule to approximate the integrals, then again

(10) D(B) = Zloankexp{Zloqu.J (a, b))
i=1

but now thery, and theay are known. The algorithm from the previous section
simplifies accordingly, and updatirig in each iteration is just a linear regression
problem. Alternatively, we can stop after the first majorization of Equafipn (7) and
updateB by solvingm logit or probit regression problems (or whatever other type
of regression problem is specified By.

5. DISCUSSION
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