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1. INTRODUCTION

Principal Component Analysis (PCA) and Factor Analysis (FA) methods for ma-

trices of zeroes and ones were discussed in De Leeuw [2003a,b]. Methods based

on correspondence analysis, on least squares multidimensional scaling, and on

Bernoulli likelihood were distinguished. The likelihood methods minimize the

deviance, which is a function of the form

(1) D(A, B) = −

n∑
i =1

m∑
j =1

log F(qi j 〈ai , b j 〉),

where〈a, b〉 is the inner product,F is a known one-dimensional cdf such as the

standard normal or the standard logistic, andqi j is the binary data, linearly trans-

formed to±1. Geometrically, minimizing this loss function means we represent

the row as points, and the columns as hyperplanes optimally separating points cor-

responding to the zeroes in the column from those corresponding to the ones.

If the number of columns is small compared to the number of rows then the geom-

etry tells us the location of the row points will be not very well determined, and in

particular row points can be moved to infinity along directions of recession. The

minimum will not be attained. In statistical terminology this happens because there

are too many incidental parameters (theai in Equation (1)).
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On common solution to this problem is to assume theai are realizations of a ran-

dom vector, with distributionG, and to minimize the marginal deviance

(2) D(B, G) = −

n∑
i =1

log
∫

exp{
m∑

j =1

log F(qi j 〈ai , b j 〉)}dG(a).

We can distinguish two special cases here. In the first caseG is completely known,

for instance we set it to the multivariate standard normal, and in the second caseG

is completely unknown, except for the fact that it must be a cdf. In this second case

we minimize the marginal deviance over bothB and G. Obviously there could

be intermediate cases, in whichG is partially known, but we do not discuss these

here.

The problem we study in this article has both (1) and (2) as special cases. We

minimize marginal deviances of the form

(3) D(B, G) = −

n∑
i =1

log
∫

exp{
m∑

j =1

log F(qi j 〈a, b j 〉)}dGi (a).

Thus each row has its own cdfGi , which can again be either completely known or

completely unknown.

This integral is studied in component or factor analysis of binary matrices, for

instance in the item response theory of educational statistics [McDonald, 1997;

Reckase, 1997] and in the roll call analysis of political science [Clinton et al.,

2003]. In recent publications, the minimization problem is often solved by using

some form of Monte Carlo method, often by Markov Chain Monte Carlo [Meng

and Schilling, 1996; Beguin and Glas, 2001; Jackman, 2001]. In this paper we

study some alternative minimization methods based onmajorization(also known

asvariational bounding).

These methods are not necessarily superior to MCMC. They do guarantee conver-

gence from any starting point and a monotone decreasing sequence of loss func-

tion valuesD . Thus one would at least expect the convergence is more regular

and somewhat easier to monitor than MCMC convergence. Moreover each step of

the algorithm computes the partial singular value decomposition (SVD) of a ma-

trix, which can be done efficiently in interpreted languages with fast linear algebra

routines, such as R or Matlab. And finally initial convergence of our majoriza-

tion algorithms is extremely fast, which means that, at the very least, they provide

excellent initializers for other algorithms.
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2. SINGLE STEP Gi

SupposeGi (a) steps from zero to one at an unknownai . Then loss function (3)

becomes loss function (1), and we are in the situation discussed in detail in De

Leeuw [2003b]. We repeat the key result here.

Suppose we have a variational bound of the form

(4) − log F(x) ≤ − log F(y) + h(y)(x − y) +
1

2
w(y)(x − y)2.

for all x andy, with equality if and only ifx = y. Observe that by completing the

square we can also write (4) as

(5a) − log F(x) ≤ − log F(y) +
1

2
w(y)(x − z(y))2

−
1

2

h2(y)

w(y)
,

where

(5b) z(y) = y −
h(y)

w(y)
.

Specific instances of such bounds for a logistic and normal cdfF are given in De

Leeuw [2003b].

The bounds can be used to implement a simple majorization algorithm. Start with

someA(0) andB(0). SupposeA(ν) andB(ν) are the current best solution. We update

them to find a better solution in two steps, similar to the E-step and the M-step in

the EM-algorithm.

Algorithm 2.1 (Majorization).

Stepν(1): Compute the matrices W(ν), H (ν)and Z(ν) with elements

w
(ν)
i j = w(qi j 〈a

(ν)
i , b(ν)

j 〉),

h(ν)
i j = h(qi j 〈a

(ν)
i , b(ν)

j 〉),

z(ν)
i j = 〈a(ν)

i , b(ν)
j 〉 − qi j

h(ν)
i j

w
(ν)
i j

Stepν(2): Solve the least squares matrix approximation problem

min
A,B

n∑
i =1

n∑
j =1

w
(ν)
i j (〈ai , b j 〉 − z(ν)

i j )2

by using the (weighted) SVD. This gives A(ν+1) and B(ν+1).
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Theorem 2.1. (1) The Majorization Algorithm 2.1 produces a decreasing se-

quenceD(A(ν), B(ν)) of loss function values.

(2) A necessary condition for a minimum of the loss functionD at (A, B) is

that the algorithm is stationary at(A, B).

(3) All accumulation points of the sequence(A(ν), B(ν)) of iterates are station-

ary points of the algorithm.

Proof. Substituteqi j 〈ai , b j 〉 for x andqi j 〈a
(ν)
i , b(ν)

j 〉 for y in Equation (5). Then

− log F(qi j 〈ai , b j 〉) ≤ − log F(qi j 〈a
(ν)
i , b(ν)

j 〉) −
1

2

(h(ν)
i j )2

w
(ν)
i j

+

+
1

2
w

(ν)
i j (〈ai , b j 〉 − z(ν)

i j )2

Now sum overi and j to obtain

D(A, B) ≤ D(A(ν), B(ν)) −
1

2

n∑
i =1

m∑
j =1

(h(ν)
i j )2

w
(ν)
i j

+

+
1

2

n∑
i =1

m∑
j =1

w
(ν)
i j (〈ai , b j 〉 − z(ν)

i j )2

The right hand side of this inequality, which we can write asE(A, B; A(ν), B(ν)),

is the majorization function. It is minimized overA andB, producingA(ν+1) and

B(ν+1). Now

D(A(ν+1), B(ν+1)) ≤ E(A(ν+1), B(ν+1)
; A(ν), B(ν)) ≤

≤ E(A(ν), B(ν)
; A(ν), B(ν)) = D(A(ν), B(ν))

This proves the first part of the theorem.

The second part also follows directly. If(A, B) is a minimizer, and the algorithm

is not stationary at(A, B), then we can update(A, B) to a solution with a lower

function value, which contradicts the assumption that(A, B) is the minimum.

For the third part we apply general results on majorization given, for instance, in De

Leeuw [1994]; Heiser [1995]; Lange et al. [2000]. �

For implementation details we refer to De Leeuw [2003b]. The most important

choice we have to make is how to compute the weighted SVD. We can apply

majorization once again, as in Groenen et al. [2003], to arrive at an unweighted
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SVD. We can also use alternating least squares (a.k.a. criss-cross regression or

NILES/NIPALS) iterations, as in Wold [1966a,b]; Daugavet [1968]. These alter-

nate updatingA for fixed B and B for fixed A, which are both linear regression

problems, any number of times within on e major iteration. Alternatively, we can

also choose to use a uniform majorization, in whichw(y) is independent ofy. This

leads directly to an unweighted SVD.

3. MULTIPLE STEPGi

Let us assume that theGi are step functions, stepping ataik . We must distinguish

two cases. In the first the location and the size of the steps are unknown. This

occurs if we try to approximate an unknownGi by a step function. It also occurs if

we optimize over all cdf’sGi , because the optimumGi in that case will be a step

function [Rustagi, 1976, Chapter IV]. The second case has known location and size

of steps. This occurs if we approximate an integral by a linear quadrature formula,

such as a product form of the Gauss-Hermite rule or a quasi-Monte Carlo rule.

We will outline the algorithm for the case in which the steps are unknown. Modifi-

cations for known steps are obvious. To simplify notation we assume that we have

the same number of steps for eachi . Using the step function representation we can

write

(6) D(A, B, π) = −

n∑
i =1

log
K∑

k=1

πik exp{
m∑

j =1

log F(qi j 〈aik, b j 〉)}.

This loss function must be minimized overA and B andπ , for various values of

both K and p. We also need some convenient abbreviations. Define

θik(A, B, π) = πik exp{
m∑

j =1

log F(qi j 〈aik, b j 〉)},

and

ξik(A, B, π) =
θik(A, B, π)

θi ?(A, B, π)
,

where we use the convention of replacing an index over which we have summed

by a star. Thus, for instance,

D(A, B, π) = −

n∑
i =1

logθi ?(A, B, π).

The algorithm in this case starts with someA(0), B(0) andπ (0). SupposeA(ν), (B(ν)

andπ (ν) are the current best solution. We update them to find a better solution in
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three steps, using majorization twice. The first majorization is based on Jensen’s

inequality, it is the same as the majorization used in the EM algorithm. The second

majorization is based on the quadratic bound in Equation (4).

Algorithm 3.1 (Majorization).

Stepν(1): Compute the arrays W(ν), H (ν)and Z(ν) with elements

w
(ν)
i jk = w(qi j 〈a

(ν)
ik , b(ν)

j 〉),

h(ν)
i jk = h(qi j 〈a

(ν)
ik , b(ν)

j 〉),

z(ν)
i jk = 〈a(ν)

ik , b(ν)
j 〉 − qi j

h(ν)
i jk

w
(ν)
i jk

.

Also compute the matrices

θ
(ν)
ik = θik(A(ν), B(ν), π (ν)),

ξ
(ν)
ik = ξik(A(ν), B(ν), π (ν)),

and the composite weightsη(ν)
i jk = ξ

(ν)
ik w

(ν)
i jk .

Stepν(2): Solve the least squares matrix approximation problem

min
A,B

K∑
k=1

m∑
j =1

η
(ν)
i jk (z(ν)

i jk − 〈aik, b j 〉)
2

by using the (weighted) SVD. This gives A(ν+1) and B(ν+1).

Stepν(3): Updateπ by

π
(ν+1)
ik = ξ

(ν)
ik .

Theorem 3.1. (1) The Majorization Algorithm 3.1 produces a decreasing se-

quenceD(A(ν), B(ν), π (ν)) of loss function values.

(2) A necessary condition for a minimum of the loss functionD at (A, B, π)

is that the algorithm is stationary at(A, B, π).

(3) All accumulation points of the sequence(A(ν), B(ν), π (ν)) of iterates are

stationary points of the algorithm.
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Proof. By Jensen’s inequality

log
θi ?(A, B, π)

θi ?(A(ν), B(ν), π (ν))
= log

K∑
k=1

ξ
(ν)
ik

θik(A, B, π)

θ̃
(ν)
ik

≥

K∑
k=1

ξ
(ν)
ik log

θik(A, B, π)

θ
(ν)
ik

,

and thus

(7) D(A, B, π) ≤ D(A(ν), B(ν), π (ν)) +

n∑
i =1

K∑
k=1

ξ
(ν)
ik logθ

(ν)
ik

−

n∑
i =1

K∑
k=1

ξ
(ν)
ik logπik −

n∑
i =1

K∑
k=1

ξ
(ν)
ik

m∑
j =1

log F(qi j 〈aik, b j 〉).

Equation (7) is the first majorization, which shows us how to optimize overπ to

decrease the loss. We now use the variational bound to majorize and simplify the

last term of Equation (7). By Equation (4)

(8) −

n∑
i =1

K∑
k=1

ξ
(ν)
ik

m∑
j =1

log F(qi j 〈aik, b j 〉) ≤

−

n∑
i =1

K∑
k=1

ξ
(ν)
ik

m∑
j =1

log F(qi j 〈a
(ν)
ik , b(ν)

j 〉)−

1

2

n∑
i =1

K∑
k=1

ξ
(ν)
ik

m∑
j =1

(h(ν)
i jk )2

w
(ν)
i jk

+
1

2

n∑
i =1

K∑
k=1

m∑
j =1

η
(ν)
i jk (〈aik, b j 〉 − z(ν)

i jk )2.

Combining Equations (7) and (8) gives us the final majorization, and shows us how

to updateA andB.

The other statements in the Theorem follow in the same way as in the proof of

Theorem 2.1. �

In an important special case we require allGi to be the same. Writeak andπk for

the steps. Define

z(ν)
jk =

∑n
i =1 η

(ν)
i jk z(ν)

i jk

η
(ν)
? jk
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By completing the square in the last term of Equation (8) we see that

(9)
1

2

n∑
i =1

K∑
k=1

m∑
j =1

η
(ν)
i jk (〈ak, b j 〉 − z(ν)

i jk )2
=

=
1

2

K∑
k=1

m∑
j =1

η
(ν)
? jk(〈ak, b j 〉 − z(ν)

jk )2
+

1

2

n∑
i =1

K∑
k=1

η
(ν)
i jk (z(ν)

i jk − z(ν)
jk )2

Thus we updateA andB by minimizing

1

2

K∑
k=1

m∑
j =1

η
(ν)
? jk(〈ak, b j 〉 − z(ν)

jk )2,

and we updateπ by

π
(ν+1)
k =

1

K
ξ

(ν)
?k .

4. QUADRATURE

If we use a linear quadrature rule to approximate the integrals, then again

(10) D(B) = −

n∑
i =1

log
K∑

k=1

πk exp{
m∑

j =1

log F(qi j 〈ak, b j 〉)}.

but now theπk and theak are known. The algorithm from the previous section

simplifies accordingly, and updatingB in each iteration is just a linear regression

problem. Alternatively, we can stop after the first majorization of Equation (7) and

updateB by solvingm logit or probit regression problems (or whatever other type

of regression problem is specified byF).

5. DISCUSSION
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