
AUGMENTATION AND MAJORIZATION ALGORITHMS FOR
SQUARED DISTANCE SCALING

JAN DE LEEUW

1. INTRODUCTION

The problem studies in this note is minimization of the loss function

(1) σ(X) =

n∑
i =1

n∑
j =1

wi j (δi j − d2
i j (X))2.

overX. HereX is ann× p configuration, thewi j are known non-negativeweights,

the δi j are knowndissimilarities, andd2
i j (X) is the squared Euclidean distance

between rowsi and j of X. Thus we fit squared distances to the dissimilarities.

We need some convenient matrix expressions for the squared distances. If we

defineC = X X′ then we can write

(2) d2
i j (X) = (ei − ej )

′C(ei − ej ) = tr C Ai j ,

with ei andej unit vectors and withAi j the matrix

(3) Ai j = (ei − ej )(ei − ej )
′.
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Many different algorithms have been proposed to minimize the loss function (1).

Foremost of these is perhaps the ALSCAL method [Takane et al., 1977], which is

of the cyclic coordinate descent type. One ALSCAL iteration consists of a cycle

over allnp coordinates ofX, minimizing loss over one coordinate at a time, while

keeping the other coordinates fixed at their current values. Since the loss function is

a multivariate quartic inX, the coordinate subproblems can be solved by finding the

roots of a univariate cubic (and choosing the one corresponding to the minimum).

Even before ALSCAL, De Leeuw [1975] proposed an augmentation algorithm to

minimize (1), in the case in which there are no weights. The paper was never

published, but the algorithm has been discussed by Takane [1977] and Browne

[1987]. They did not include the original derivation and a convergence proof. We

give this missing derivation and the proof, for archival purposes. And we also add a

(new) majorization algorithm to minimize loss function (1) for the case of unequal

weights1.

2. AUGMENTATION ALGORITHM

Suppose all weights are equal to one, and we want to minimize

(4) σ(X) =

n∑
i =1

n∑
j =1

(δi j − d2
i j (X))2.

over X. In fact, we minimize overX ∈ X, whereX are the column-centered

matrices.

1For the cyclic coordinate ascend, block relaxation, alternating least squares, augmentation, and

majorization terminology we refer to the Appendix.
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Consider the augmented loss function

(5) λ(X, 0) =

n∑
i =1

n∑
j =1

n∑
k=1

n∑
`=1

(γi jk` − di jkl (X))2,

wheredi jkl (X) = (ei −ej )
′C(ek − è ). Now minimize the augmented loss function

over X ∈ X and over0 constrained byγi j i j = δi j . Thus the “diagonal” elements

of 0 are constrained to be equal to the corresponding elements of1, and all other

elements are free. Write these constraints as0 ∈ G.

Clearly

(6a) min
0∈G

λ(X, 0) = σ(X)

and thus

(6b) min
X

σ(X) = min
X

min
0∈G

λ(X, 0).

The augmentation algorithm is defined by using block relaxation onλ, that is we

iteratively alternate minimization overX for fixed0 and minimization over0 ∈ G

for fixed X. Or, in other words, we applyalternating least squaresto λ.

Convergence of the algorithm, to a stationary point, follows from the general the-

ory of block relaxation algorithms. We produce a decreasing sequence of loss

function values using a continuous update mapping, and we can thus apply the

theory in Zangwill [1969].
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3. SIMPLIFICATIONS

We now have a definition of the algorithm, but we still have to show that the two

substeps of the alternating least squares iteration are relatively easy to implement.

Otherwise there is very little reason to make the problem seemingly more compli-

cated by augmenting it.

Clearly minimizing over0 ∈ G is trivially easy, because we just set the diagonal

elementsγi j i j to δi j and we set all otherγi jkl equal todi jkl (X). Thus

(7) γi jk` = δikδ j `(δi j − d2
i j (X)) + (ei − ej )

′C(ek − è ).

The other substep is more interesting. In order to minimize overX ∈ X, for fixed

0, observe we can write the augmented loss function in the form

(8) λ(X, 0) = c − 2tr CV + 4n2tr C2
= 4n2tr (C −

1

4n2
V)2

+ c −
n2

4
tr V2.

Herec is the constant

c =

n∑
i =1

n∑
j =1

n∑
k=1

n∑
`=1

γ 2
i jkl

andV is the matrix

V =

n∑
i =1

n∑
j =1

n∑
k=1

n∑
`=1

γi jkl (ei − ej )(ek − è )′,
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and we have also used the fact that

n∑
i =1

n∑
j =1

n∑
k=1

n∑
`=1

d2
i jkl (X) =

=

n∑
i =1

n∑
j =1

n∑
k=1

n∑
`=1

(ei − ej )
′C(ek − è )(ek − è )′C(ei − ej ) = 4n2tr C2.

It follows that minimization ofλ over X ∈ X for fixed 0 can be accomplished by

finding the best rankp approximation to the matrix1
4n2 V , using standard eigenvector-

eigenvalue methods.

We can derive a more compact expression forV in terms ofγ . From the definition

V =

n∑
i =1

n∑
k=1

γi ?k?ei e
′

k −

n∑
i =1

n∑
`=1

γi ??`ei e
′

`

−

n∑
j =1

n∑
k=1

γ? jk?ej e
′

k +

n∑
j =1

n∑
`=1

γ? j ?`ej e
′

` =

n∑
i =1

n∑
v=1

(γi ? j ? − γi ?? j − γ?i j ? + γ?i ? j )ei e
′

j

And we simplify it even more by substituting the expression for the currently opti-

malγ , which means we can rewrite the iterations without reference toγ at all, just

in terms ofX. Using (7) we see that

V = −2
n∑

i =1

n∑
j =1

(δi j − d2
i j (X))Ai j + 4n2C.

Thus the iteration is a rankp approximation to

C̃ −
1

2n2
H(X̃),
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where

H(X̃) =

n∑
i =1

n∑
j =1

(δi j − d2
i j (X))Ai j .

4. MAJORIZATION

The majorization algorithm is based on the fact that the loss function is quadratic in

the elements ofC. By using (or bounding) the largest eigenvalue of the quadratic

component, we can again reduce the iteration to computing an optimal rankp

approximation.

First

σ(C) =

n∑
i =1

n∑
j =1

wi j δ
2
i j − 2tr BC +

n∑
i =1

n∑
j =1

wi j (ci i + c j j − 2ci j )
2

where

B =

n∑
i =1

n∑
j =1

wi j δi j Ai j .

Next

n∑
i =1

n∑
j =1

wi j (ci i + c j j − 2ci j )
2

≤

n∑
i =1

n∑
j =1

wi j (c̃i i + c̃ j j − 2c̃i j )
2
+ 2tr G(C − C̃) + 4ω

n∑
i =1

n∑
j =1

(ci j − c̃i j )
2,

where

G =

n∑
i =1

n∑
j =1

wi j d
2
i j (C̃)Ai j ,
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and whereω is the sum of thewi j . Here we have used Cauchy-Schwartz in the

form

[(ci i − c̃i i ) + (c j j − c̃ j j ) − 2(ci j − c̃i j )]
2

≤ 4
n∑

i =1

n∑
j =1

(ci j − c̃i j )
2

Combining what we have so far gives

σ(C) ≤ σ(C̃) − 2tr H(X̃) + 4ωtr (C − C̃)2,

which shows that we updateX by finding the optimal rankp approximation of

C̃ −
1

4ω
H(X̃).

APPENDIX A. TYPES OF ALGORITHMS

Supposef is a function onX × Y. A block relaxationalgorithm for minimizing

f starts with somex0 ∈ X. In each iterationk we find y(k)
= argmin

y∈Y
f (x(k), y)

and thenx(k+1)
= argmin

x∈X
f (x, y(k)). Thus we alternate updatingx andy. If the

function we are minimizing is a least squares loss function, then block relaxation

becomesalternating least squares. Although we have defined block relaxation for

two blocks, it is clear how to generalize it to more than two. If there are more than

two blocks it becomes interesting how we cycle through the blocks. If each of the

blocks only consists of a single variable, then block relaxation iscyclic coordinate

descend. Block relation is worthwhile if the subproblems are simple, compared to

the original problem. Block relation methods in statistics are discussed in Ober-

hofer and Kmenta [1974]; Jensen et al. [1991]; De Leeuw [1994] and alternating

least squares became popular in the ALSOS system summerized by Young [1981].
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One important special case of block relaxation isaugmentation. The problem is

to minimize a functiong over X, but we assume we can find anaugmentation

function f on X × Y such thatg(x) = miny∈Y f (x, y). Augmentation algorithms

apply block relaxation to the augmentation function. They should be considered

if we can find an augmentation function which is simpler to minimize than our

original functiong. The most familiar examples of augmentation algorithms are

in factor analysis, where we augment the reduced correlation matrix by including

the diagonal elements, and in unbalanced factorial analysis of variance, where we

augment by adding enough elements to each cell to get a balanced design.

Majorization is a special case of augmentation. Again the problem is to mini-

mize g(x) on X. Suppose we can find amajorization function fon X × X

such thatg(x) ≤ f (x, y) for all x, y ∈ X and g(x) = f (x, x) for all x ∈ X.

Then f is an augmentation ofg, with the special property thatg(x) = f (x, x) =

miny∈X f (x, y) for all x. Again, amajorization algorithmapplies block relation

to the majorization function. Majorization methods are discussed in detail by De

Leeuw [1994]; Heiser [1995]; Lange et al. [2000] and for quadratic majorization

functions by B̈ohning and Lindsay [1988].
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