AUGMENTATION AND MAJORIZATION ALGORITHMS FOR
SQUARED DISTANCE SCALING

JAN DE LEEUW

1. INTRODUCTION

The problem studies in this note is minimization of the loss function
n n
(1) o(X) =Y Y wij (& — 3 (X)%
i=1 j=1
over X. HereXis ann x p configurationthew;; are known non-negatiweeights
the 6;; are knowndissimilarities and dizj(X) is the squared Euclidean distance

between row$ andj of X. Thus we fit squared distances to the dissimilarities.

We need some convenient matrix expressions for the squared distances. If we
defineC = X X' then we can write

(2) d?(X) = (& —€))'C(a — &) =tr CAy,

with & ande; unit vectors and withA;j the matrix

(3) Aj=(a—¢g)e—g).
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Many different algorithms have been proposed to minimize the loss fungfion (1).
Foremost of these is perhaps the ALSCAL method [Takane|ét al.] 1977], which is
of the cyclic coordinate descent type. One ALSCAL iteration consists of a cycle
over allnp coordinates o, minimizing loss over one coordinate at a time, while
keeping the other coordinates fixed at their current values. Since the loss function is
a multivariate quartic irX, the coordinate subproblems can be solved by finding the

roots of a univariate cubic (and choosing the one corresponding to the minimum).

Even before ALSCAL) De Leeuw [1975] proposed an augmentation algorithm to
minimize [1), in the case in which there are no weights. The paper was never
published, but the algorithm has been discussed by Takane|[1977] and Browne
[1987]. They did not include the original derivation and a convergence proof. We
give this missing derivation and the proof, for archival purposes. And we also add a

(new) majorization algorithm to minimize loss functi¢n (1) for the case of unequal

weights}
2. AUGMENTATION ALGORITHM

Suppose all weights are equal to one, and we want to minimize
n n
4 a(X) =Y (& —d5(X)>2.
i=1 j=1
over X. In fact, we minimize oveiX € X, whereX are the column-centered
matrices.

Iror the cyclic coordinate ascend, block relaxation, alternating least squares, augmentation, and

majorization terminology we refer to the Appendix.
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Consider the augmented loss function
5) A(X,T) = (ijke — Ghjii (X))?,

whered;jx (X) = (& —¢€;)'C(e —€;). Now minimize the augmented loss function
over X € X and overl” constrained byji; = &;. Thus the “diagonal” elements
of I' are constrained to be equal to the corresponding elemertsariid all other

elements are free. Write these constraints &s§.

Clearly
(6a) MiNA(X, T) = o (X)
I'eg
and thus
(6b) n)1<|no(X) = n}<|n rrnelgz\(x, ).

The augmentation algorithm is defined by using block relaxatioh,dhat is we
iteratively alternate minimization ovet for fixed I" and minimization overl” € §

for fixed X. Or, in other words, we applglternating least square® 2.

Convergence of the algorithm, to a stationary point, follows from the general the-
ory of block relaxation algorithms. We produce a decreasing sequence of loss
function values using a continuous update mapping, and we can thus apply the

theory in Zangwill [1969].
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3. SMPLIFICATIONS

We now have a definition of the algorithm, but we still have to show that the two
substeps of the alternating least squares iteration are relatively easy to implement.
Otherwise there is very little reason to make the problem seemingly more compli-

cated by augmenting it.

Clearly minimizing overl” € § is trivially easy, because we just set the diagonal

elementsy;i; to §; and we set all othepj equal tod;j (X). Thus

7) Vijke = 8814 (8 — di (X)) + (6 — €)'C(ac — ).

The other substep is more interesting. In order to minimize &ver X, for fixed

", observe we can write the augmented loss function in the form
240 (2 2 1.2 n’ 2
(8) AM(X,T)=c—2tr CV +4n“tr C° = 4n“tr (C_HV) +c— Ztr Ve.

Herec is the constant

andV is the matrix

V= ik (& —ej) (e — &),
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and we have also used the fact that

dizjkl X) =

=}
=}
=}
=}

Y (& —e)Cex — &)(a — &)'C(e — &) = 4n’tr C.
i=1 j=1k=1 ¢=1

It follows that minimization ofs over X € X for fixed I' can be accomplished by
finding the best rank approximation to the matri%#v, using standard eigenvector-

eigenvalue methods.

We can derive a more compact expressiorvMadn terms ofy. From the definition

n n noon
V= Vla(k*ae/k—X:X:VI**(ae;Z
i=1 k=1 i=1 (=1
n n noon
o Z Z J/*‘J-k*eje/k + Z Z )/*j*geje% =
j=1 k=1 j=1 ¢=1

n n
Z Z(Vi*j* - )/i**j - )/*ij* + V*i*j)a e/j

i=1 v=1
And we simplify it even more by substituting the expression for the currently opti-
mal y, which means we can rewrite the iterations without referengedball, just
in terms ofX. Using [7) we see that
non
V=-2%"% ") — dj (X)Aj +4n’C.
i=1 j=1

Thus the iteration is a rang approximation to

~ 1 ~
€ — ——H(X),
o2 (X)
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where

n n

H(X) = (&) — A3 (X)) A}
j=1

i=1 j=
4. MAJORIZATION

The majorization algorithm is based on the fact that the loss function is quadratic in
the elements of. By using (or bounding) the largest eigenvalue of the quadratic
component, we can again reduce the iteration to computing an optimalpgrank

approximation.

First
n n n n
o(C) = Zzwijgizj — 2tr BC+ZZU)”(C” =+ Cjj —ZCij)2
i=1 j=1 i=1 j=1
where
n n
B= wijéij Aij.
i=1 j=1
Next
n n
wij (Gii + Cjj — 2Gj)* <
i=1 j=1
n n B n n
DY wij @i +6j —26)° +2tr GC —C) +4w Y Y (Gj — G,
i=1 j=1 i=1 j=1
where
n n
G= w”dizj(C)A.],
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and wherew is the sum of thew;;. Here we have used Cauchy-Schwartz in the
form

n n
[(Ci — i)+ (cjj —Cjj) — 2(cij — G)? < 42 Z(Cij —Gj)?
i=1 j=1

Combining what we have so far gives
o(C) <o (C) — 2tr H(X) + dwtr (C — C)?,
which shows that we updaté by finding the optimal rankp approximation of
.1 .
C— —HX).
o (X)
APPENDIXA. TYPES OF ALGORITHMS

Supposef is a function onX x Y. A block relaxationalgorithm for minimizing
f starts with somexg € X. In each iteratiork we find y® = argmin f (x®, y)

yeY
and thenx®*+V = argmin f (x, y®). Thus we alternate updatingandy. If the

xeX
function we are minimizing is a least squares loss function, then block relaxation
becomeslternating least squareAlthough we have defined block relaxation for
two blocks, itis clear how to generalize it to more than two. If there are more than
two blocks it becomes interesting how we cycle through the blocks. If each of the
blocks only consists of a single variable, then block relaxati@ydic coordinate
descendBlock relation is worthwhile if the subproblems are simple, compared to
the original problem. Block relation methods in statistics are discussed in|Ober-

hofer and Kmentid [1974]; Jensen et al. [1991]; De Leeuw [1994] and alternating

least squares became popular in the ALSOS system summerized by Young [1981].
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One important special case of block relaxatiomigymentation The problem is

to minimize a functiong over X, but we assume we can find angmentation
function fon X x Y such thag(x) = minyey f (X, y). Augmentation algorithms
apply block relaxation to the augmentation function. They should be considered
if we can find an augmentation function which is simpler to minimize than our
original functiong. The most familiar examples of augmentation algorithms are
in factor analysis, where we augment the reduced correlation matrix by including
the diagonal elements, and in unbalanced factorial analysis of variance, where we

augment by adding enough elements to each cell to get a balanced design.

Majorization is a special case of augmentation. Again the problem is to mini-
mize g(x) on X. Suppose we can find majorization function fon X x X

such thatg(x) < f(x,y) forall x,y € X andg(x) = f(x,x) for all x € X.
Then f is an augmentation aj, with the special property thai(x) = f(x, x) =
minyex f(x,y) for all x. Again, amajorization algorithmapplies block relation

to the majorization function. Majorization methods are discussed in detail by De
Leeuw [1994]] Heiser [1995]; Lange et|al. [2000] and for quadratic majorization

functions by Bhning and Lindsay [1988].
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