
GENERALIZATIONS OF OSTROWSKI’S THEOREM

JAN DE LEEUW

1. INTRODUCTION

Ostrowski [1966], see also Ortega and Rheinboldt [1970, Chapter 10], stud-
ied stationary one-point iterative processes of the form

(1) x(k+1) = G(x(k)).

Here G : D ⊂ Rn ⇒ Rn. In particular, Ostrowski’s theory deals with
points of attraction and points of repulsion of such iterations, and with their
speed of convergence.

Definition 1.1. A point x? is a poa if there is a neighborhood of x? such
that the iteration G converges to x? when started at any point x0 in the
neighborhood.

2. NONMETRIC DISCRIMINANT ANALYSIS

2.1. Loss Function. In nonmetric discriminant analysis [De Leeuw, 1968]
the problem is to minimize a loss function of the form

(2) σ(β, y) = ‖Xβ − y‖2

over all β such that ‖Xβ‖2 = 1 and over all y ≥ 0. Here X is a given n× p

matrix, which we suppose (without loss of generality) to satisfy X ′X = I .
This is just one method to find an approximate solution to the (possibly
inconsistent) system of linear inequalities Xβ ≥ 0.
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2.2. Algorithm. De Leeuw [1968] proposes to minimize the loss function
by block relatation [De Leeuw, 1994]. We start with some initial β, then
find the optimal y ≥ 0 for the given β, then update β by computing the
optimal β for the current y, and so on.

Finding y(β), the optimal y for given β, is very simple, because it merely
involves taking the non-negative part of Xβ. Thus

yi(β) =

x′
iβ if x′

iβ ≥ 0,

0 if x′
iβ < 0

It is convenient, for our purposes, to define the binary diagonal matrix M(β)

by

mii(β) =

1 if x′
iβ ≥ 0,

0 if x′
iβ < 0

Clearly y(β) = M(β)Xβ. It should be emphasized that if Xβ has zero
elements, then there are other binary diagonal matrices M such that y(β) =

MXβ

In this notation our algorithm alternates the steps

y(k+1) = M(β(k))Xβ(k),(3a)

λ(k+1)β(k+1) = X ′y(k+1).(3b)

with λ(k+1) chosen such that ‖β(k+1)‖ = 1.

2.3. Condensed Form. If we combine the two steps of Algorithm 7 we
find

(4) λ(k+1)β(k+1) = X ′M(β(k))Xβ(k)

and this is the iteration in Rp that we study in this example.

The map β(k) ⇒ β(k+1) is continuous, but in general not differentiable.
Thus Ostrowski’s theorem does not apply directly, and a more detailed anal-
ysis is needed.
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2.4. Fixed Points. What are the fixed points of this map ?

Let us partition the set of all possible values of β by using the set M of
binary diagonal matrices M . For each of the 2n matrices M ∈ M define the
cones

KM = {β | MXβ ≥ 0}.

The cones KM consist of all β that produce the same sign pattern in Xβ. Of
course some of the cones may be degenerate cone KM = {0}. In particular

Now find the fixed points in each of the KM , skipping the ones for which
KM = {0}. This means we have to solve

X ′MXβ = λX ′Xβ,(5a)

β ∈ KM .(5b)

Equation (5a) says β is an eigenvector of the generalized eigenvalue prob-
lem defined by M , so we merely have to check if there is indeed an eigen-
vector in the cone KM . If there is such an eigenvector β̂, normalize it by
β̂′X ′Xβ̂ = 1, and set ŷ = MXβ̂. For this solution λ̂ = β̂′X ′MXβ̂ =

1− σ(β̂, ŷ).

It is also easy to see that if (β̂, λ̂) is a solution of the stationary equations for
cone KM , then so is (−β̂, 1 − λ̂) for cone KI−M . Stationary values occur
in pairs.

2.5. Numerical Example. Consider the following small example with n =

10.

There are twenty non-trivial cones KM in this case, because each of the ten
lines `i = {β | x′

iβ = 0} divides the plane into two half-spaces. Ordering
the lines clockwise defines the cones as the pieces between adjacent half-
lines. The twenty cones occur in pairs, with one member of the pair the
negative of the other.

By exhaustively searching the ten cones we find the following pairs of sta-
tionary values.



4 JAN DE LEEUW

-1.35197864003772 0.697985577308151
-0.0874873643060007 -0.94704322032545
0.0536054871679144 0.863455120675496

-0.36186071455119 -2.83999386122057
1.05205110884098 0.638117926006177

-1.96427832254002 0.298018854643880
0.500615236829422 -0.153907184745402

-0.522611258664262 0.780199767226874
0.559141386252437 -0.0439217343211844
0.181360391793109 -0.0477995853847141
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0.8154202 0.9628697 -0.2699664
0.1845798 -0.9628697 0.2699664
0.7478425 0.9009728 0.4338756
0.2521575 -0.9009728 -0.4338756
0.8174072 0.2157659 0.9764451
0.1825928 -0.2157659 -0.9764451
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3. NONHOMOGENEOUS INEQUALITIES

There is an interesting variation

(6) σ(β, y) = ‖Xβ − z − y‖2

with z a known non-zero vector. This must be minimized over β, which we
do not have to normalize any more, and over y ≥ 0. We can think of this
as a method to approximately solve the system Xβ ≥ z. Alternatively, we
can think of this as a homogeneous problem in which we do not normalize
by ‖β‖ = 1 but by fixing one of the elements of β to be −1.

Define M(β) as any binary diagonal matrix such that M(β)(Xβ − z) ≥ 0.
The block iterations are

y(k+1) = M(β(k))(Xβ(k) − z),(7a)

β(k+1) = X ′(z + y(k+1)),(7b)

which is in the condensed form

(8) β(k+1) = X ′[z + M(β(k))(Xβ(k) − z)].

At a stationary point we have the normal equations

(9) X ′(I −M(β))Xβ = X ′(I −M(β))z.

Instead of solving an eigenvalue problem for each cone, we now have to
solve these normal equations for each closed convex polyhedron CM .
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APPENDIX A. CODE

r e q u i r e ( ”MASS” )

l i n e q<−f u n c t i o n ( x , beta =rep ( 1 , dim ( x ) [ 2 ] ) ) {
x inv<−g inv ( x )

5 y<−x%∗%beta
s<−s q r t ( sum ( y ˆ 2 ) )

beta<−beta / s ; y<−y / s ; i t e l<−1

r ep ea t {
y h a t<−y

10 y h a t [ which ( y<0) ]<−0

p r i n t ( c ( 0 , i t e l , sum ( ( y−y h a t ) ˆ 2 ) ) )

beta<−x inv%∗%y h a t

y<−x%∗%beta
s<−s q r t ( sum ( y ˆ 2 ) )

15 beta<−beta / s ; y<−y / s

p r i n t ( c ( 1 , i t e l , sum ( ( y−y h a t ) ˆ 2 ) ) )

i f ( i t e l ==10) break ( )

e l s e i t e l<− i t e l +1

}
20 y h a t

}
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