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1. FRAMEWORK

1.1. Data. The data is a sequence z = {zn} of observations, where zn ∈

Rq .

Although actual data are always finite sequences, we assume the actual data
are actually the first members of an infinite sequence of vectors z. The
remaining elements of the sequence are missing data.

1.2. Statistics. From the data z we compute an infinite sequence of statis-
tics x = {xn}, where xn ∈ Rp. We do not specify how the statistics are
computed.

In most of the examples we have in mind the statistic xn depends on the
first n observations only. For instance, xn could be the mean of the first n
observations, or their covariance matrix, or their histogram. If the zn are
binary indicators, then the means xn are vectors of proportions.

1.3. Framework. The actual data, a finite sequence of vectors, is first
imbedded An observation x = {xn} is a sequence of random vectors vary-
ing in an open set S ⊆ Rp. Our observations can be sequences of means,
proportions, covariance matrices, and so on. If the zn are binary indicators,
then the means xn are vectors of proportions.

The basic assumption in this paper is that there is a µ ∈ S such that

(1) lim
n→∞

E(xn) = µ.
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We call µ the truth. Thus our random vectors observe the truth. In general,
we do not know the truth, because if we did there would be no reason to
observe it1.

There are many interesting methodological problems with modeling obser-
vations as random variables, let alone sequences of random variables, but
we ignore these problems in this paper. There are other interesting philo-
sophical problems dealing with the notion of truth. We ignore those as well.

We do assume there is a positive semi-definite matrix S such that

(2) lim
n→∞

nV(xn) = 6.

We call 6 the precision.

In general, we do not know the precision either. In some cases, however,
we are able to observe the precision, in the sense that we have a sequence of
random matrices S = {Sn}, which may or may not depend on x , such that

(3) lim
n→∞

E(Sn) = 6.

We use X (µ, 6) for the set of observations with a given truth µ and a given
precision 6. Two observations x and z inX (µ, 6) are said to be orthogonal
if

(4) nC(xn, zn) → 0.

2. DISCREPANCY

In this paper we want to quantify how far we are from the truth, and we
want to study ways of getting nearer to the truth2.

1Some of us already know the truth, and do not need observations.
2Always keeping in mind what the band of the Titanic played because the ship was

going down.
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In order to do this, we define a discrepancy, which is a function 1 mapping
S × S into the non-negative reals. For all x ∈ S and y ∈ S we have

1(x, y) ≥ 0,(5a)

1(x, x) = 0.(5b)

We do not assume symmetry or the triangle inequality, because they are not
relevant for our purposes.

We choose our discrepancy to be smooth, i.e. to be continuously differen-
tiable enough times for the following results to be true. The details are left
to others.

Define the partials

g(x, y) = ∂11(x, y),(6a)

h(x, y) = ∂21(x, y).(6b)

and

A(x, y) = ∂111(x, y),(7a)

B(x, y) = ∂121(x, y),(7b)

C(x, y) = ∂211(x, y),(7c)

D(x, y) = ∂221(x, y).(7d)

For all x and y in S the matrices A(x, y) are D(x, y) are symmetric, and
B(x, y) is the transpose of C(x, y).

Lemma 2.1. For all x ∈ S

g(x, x) = h(x, x) = 0,(8a)

A(x, x) = −B(x, x) = −C(x, x) = D(x, x).(8b)

Proof. Consider 1(x, y) as a function of y for fixed x . The function has a
minimum at y = x , where the partials must vanish. Thus g(x, x) = 0. In
the same way h(x, x) = 0. Differentiating these relations with respect to x
we find A(x, x) + B(x, x) = 0 and C(x, x) + D(x, x) = 0. But A(x, x)

and D(x, x) are symmetric, and thus so are B(x, x) and C(x, x). Since
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B(x, x) must be the transpose of C(x, x), the two are actually equal, and
thus A(x, x) and D(x, x) are equal as well. �

We can use our discrepancy to define another discrepancy D, this time be-
tween elements of X (µ, 6). Define

(9) D(x, y) = lim
n→∞

nE(1(xn, y
n
)).

With a slight abuse of notation we use µ for the sequence of random vari-
ables with all its elements a.s. equal to µ.

Theorem 2.2. If x is in X (µ, 6) then

(10) D(x, µ) = D(µ, x) =
1
2

tr A(µ, µ)6.

If x and y in X (µ, 6) are orthogonal then

(11) D(x, y) = D(y, x) = tr A(µ, µ)6.

Proof. �

3. STATISTICS

We know that observation x observes the truth. But in statistics we do not
observe, we estimate.

We do not really have any x , or even a single xn . We only have the data
x = {xn}, a sequence of elements of S, in no sense consisting of random
variables.

We link the data to the observations by saying that xn is a realization of
xn for all n, or, equivalently, that x is a realization of x . We invariably get
into trouble if we try to tell you what this means, so instead I’ll just use the
symbol x ∼ x or xn ∼ xn for it.

In fact, often the data consist of a single statistic, i.e. a single element of S,
i.e. a single cross table or covariance matrix, and we use a trick to make it
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into a sequence. We define xn as the value of our statistic based on the first
n observations.

n1(xn, µ) ∼
1
2

A(xn, xn)6n ∼
1
2

n1(xn, yn)

4. ESTIMATION

Suppose F is a function mapping S into S. We suppose that F is smooth.
Define the matrix

G(x) = ∂ F(x)

F preserves the truth if F(µ) = µ. This implies

lim
n→∞

E(F(xn)) = F(µ) = µ

and thus {F(xn)} observes the truth.

Since we do not know the truth, this does not seem to be a useful concept.
But suppose we know that

µ ∈ � ⊆ S,

with � a smooth manifold. Define F(x) to be the metric projection of x on
�, i.e.

F(x) = argmin
y∈�

1(x, y).

If µ ∈ � then obviously F(µ) = µ.

� is a model. If µ ∈ � then the truth is in the model, in other words the
model is true.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-
1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu


	1. Framework
	1.1. Data
	1.2. Statistics
	1.3. Framework

	2. Discrepancy
	3. Statistics
	4. Estimation

