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What I wanted to do

• Present multilevel linear, nonlinear, and 
generalized linear models.

• Discuss how they have been applied in fMRI 
analysis so far.

• Use them to analyze a real (UCLA) example.

Unfortunately, I was overtaken by reality and I could 
only do the first two. The third will come later.



Data
fMRI data are often hierarchical. This means that we 
have nested observation units. Trials are nested within 
sessions, sessions within subjects, subjects within 
certain well-defined groups. 

To fix our framework, let us consider the fMRI time 
series of hemodynamic signals at a single voxel, 
observed for each of m subjects. We look at single 
voxels because we want to use models with univariate
outcomes. Ultimately, of course, multivariate extensions 
are needed.



Two-step Analysis

y
j
= X jβ j+ε j

1

For each series we assume a linear model of the form

ε j ∼ N
[
0, " j(θ)

]

1

Parametric specification allows us to estimate the
vector of regression coefficients and the matrix of error 
dispersions for each group. In the second step we then 
related the individual-level parameter estimates to 
individual-level regressors. In fMRI this is knows as the 
“summary statistics” approach, in multilevel analysis it is 
known as the “slopes as outcomes” approach.



Linear Multilevel Analysis
Multilevel analysis makes this two-step approach 
more precise and rigorous. We specify the first step 
as

y
j
= X jβ j

+ε j

1

and the second step as

β
j
= Z jγ +δ j

1

Generalization to more than two levels is 
obvious.



ε j ∼ N
[
0, " j(θ)

]

1

δ j ∼ N
[
0, " j(ξ)

]

1

δ j ⊥ ε# ∀ j, #
δ j ⊥ δ# ∀ j #= #
ε j ⊥ ε# ∀ j #= #

1

To make us statisticians happy, we also assume



The two specifications can be combined to

y
j
= X j Z jγ + X jδ j + ε j

1

y
j
∼ N

[
X j Z jγ , X j" j (ξ)X ′

j + $ j (θ)
]

1

where we see how the resulting model is a mixed 
linear model, or a general linear model with a specific 
error dispersion structure that reflects information 
from both levels and with expectation structure that
consists of cross level interactions.



In classical multilevel analysis we have some 
additional specifications

but especially the last one is usually inappropriate 
for time series data.  Also

! j(ξ) = !(ξ),

# j(θ) = θ2I j,

1

Z j =


z′j 0 · · · 0

0 z′j · · · 0
... ... . . . ...
0 0 · · · z′j



1



In that case the cross level interactions are precisely the 
products of one first level and one second level 
predictor. 

X j Z j = [
x
j1
z′j x j2z′j · · · x jpz

′
j

]

1

If the regressions have an intercept, it means both 
design matrices have a column of ones, which means 
that predictors of both levels occur in the design 
matrix.

This design matrix can quickly become very big (and 
very ill-conditioned).



Estimation
• We distinguish between the maximum 

likelihood estimate (FIML) and the residual 
or restricted maximum likelihood estimate 
(REML).

• Algorithms use either scoring, or iterative 
generalized least squares, or EM, or MCMC.

• Random effects are not “estimated” in the 
usual sense but after we have parameter 
estimates we can compute the BLUP, i.e. the 
condional expectation of the random effect 
given the data. This gives “shrinkage 
estimates”.



fMRI Applications
• Pan et al (Human Brain Mapping 2003). 

Simple two-level model.

• Friston et al (NeuroImage 2002ab). Theory 
(linear multilevel models, more tha two 
levels, EM estimation) and applications.

• Beckmann et al (NeuroImage, 2003). Two-
level multi-subject/multisession model.

• Woolrich et al (NeuroImage 2004). Bayesian 
version of the two-level model.



Nonlinear MLM’s
Work of statisticians such as Bates and Pinheiro
(NLME in R) and of educational statisticians such 
as Goldstein (MLWIN) has generalized the basic
multilevel model to

y
i j

= f (xi j, β j
) + εi j

1

Such models are fitted by using the same 
linearization techniques as in ordinary nonlinear
least squares, leading to an approximate linear
multilevel model.



Generalized MLM’s
We get a GLM by generalizing an LM.  We get a 
GMLM by generalizing an MLM.

y
j
| δ j ∼ φ(•, δ j),

E(y
j
| δ j) = µ j,

g(µ j) = X j Z jγ + X jδ j,
δ j ∼ ψ.

1



The usual GLM notions of link function and canonical link 
apply.  As an example we use the mixed linear logit model, 
with likelihood

This is generally difficult to evaluate, let alone optimize, 
because of the integral which usually can not be 
evaluated in a closed form.

Observe that other link functions and exponential 
distributions can be used to accommodate outcomes 
that are counts or positive measurements.

L =
m∑
j=1
log

∫ n j∏
i=1
exp(yi j (ui jγ+xi jδ j ))[1+exp(ui jγ+xi jδ j )]−1ψ(δ j )dδ j

1



• Quadrature (for instance Hermite)

• Expanding the likelihood around a fixed delta 
(PQL, MQL, linear, quadratic)

• MCMC

• Laplace approximation (number of terms)

• Nonparametric (point) distribution for delta

Computationally there are a large number of possible 
approaches to avoid computing the integral.

Computation



Software

• HLM

• MLWin

• Bugs

• R (various packages)

• MIXOR/MIXREG

• GLAMM in Stata

• Others (MLM, Mplus)



Discussion
• How Bayesian do you want to be ? And who 

cares ?

• Is MCMC really the computational tool of choice 
or just another sampling/optimization method?

• In multilevel analysis multivariate responses are 
incorporated as an additional “inner” level 
(variables nested in responses). Can this be used 
in fMRI ?

• Beckmann et al and Woolrich et al assume 
homoscedasticity of first-level errors. This seems 
optimistic  for fMRI, certainly with  multiple-time 
related voxels.


