
LEAST SQUARES METRIC MULTIDIMENSIONAL SCALING

JAN DE LEEUW

A. We study the properties of Kruskal’s stress loss function used in mul-

tidimensional scaling. In particular, we discuss and extend what is known about

the local minima of the function.

1. I

In this paper we study the properties of the function

(1) σ(X) =
1
2

n∑
i=1

n∑
j=1

wi j(δi j − di j(X))2.

Here the wi j and the δi j are known non-negative numbers, called, respectively,
weights and dissimilarities. X is an unknown n× p matrix called the configuration,
and the di j(X) are the Euclidean distances between the rows of X. Thus

di j(X) =

√√ p∑
s=1

(xis − x js)2.

Minimizing (1) over all configurations is one form of metric multidimensional scal-
ing (MDS). Nonmetric MDS methods often have to solve a sequence of metric
MDS problems The loss function (1) is usually called stress, and it was first used
in MDS by Kruskal [1964a,b].

1.1. Simplification. We use some notation first introduced by De Leeuw and Heiser
[1980]. If the ei are unit vectors (columns of the identity matrix) then

d2
i j(X) = (ei − e j)′XX′(ei − e j) = tr X′Ai jX
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with Ai j = (ei − e j)(ei − e j)′. Without loss of generality we can assume that

1
2

n∑
i=1

n∑
j=1

wi jδ
2
i j = 1,

and thus

(2) σ(X) = 1 −
n∑

i=1

n∑
j=1

wi jδi j
√

tr X′Ai jX +
1
2

tr X′VX,

where

V =
n∑

i=1

n∑
j=1

wi jAi j.

By introducing the matrix-valued function

B(X) =
n∑

i=1

n∑
j=1

wi j
δi j

di j(X)
Ai j,

and the shorthand

η2(X) = tr X′VX,

ρ(X) = tr X′B(X)X,

we can write

(3) σ(X) = 1 − ρ(X) +
1
2
η2(X).

Representation (3) shows that stress is the difference of a convex quadratic η2(X)
and a positively homogeneous non-negative convex function ρ(X). In other words,
it is a dc-function [Tao and Souad, 1986]. This is the basis of the majorization
algorithm

(4) X ← V−1B(X)X,

which was first discussed by Guttman [1968], then shown to be globally convergent
by De Leeuw [1977], and to have a linear convergence rate by De Leeuw [1988].

2. F- S

If we reformulate the MDS problem in terms of C = XX′ we obtain from (2)

(5) σ(C) = 1 −
n∑

i=1

n∑
j=1

wi jδi j
√

tr Ai jC +
1
2

tr VC,
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which must be minimized over all positive semi-definite C with rank(C) ≤ p. The
requirement that C is positive semi-definite is also written as C & 0. It defines a
closed convex cone in the space of all n × n symmetric matrices.

Theorem 2.1. σ(C) is strictly convex on the cone C & 0.

Proof. The term tr VC is linear in C. The term
√

tr Ai jC is the square root of a
non-negative linear function, and thus it is strictly concave. �

If we ignore the rank constraint, and only require C & 0, then the corresponding
MDS problem is called full-dimensional scaling or FDS [De Leeuw, 1993; Leeuw
and Groenen, 1993]. We have seen that the FDS problem has no local minima and
a unique solution CF . We call rank(CF) the FDS rank of the dissimilarities ∆, and
write it as rF(∆).

It is clear that the global minimum in an MDS problem with p ≥ rF(∆) can be found
simply by computing CF and choosing X such that CF = XX′. This suggests and
alternative way to doing metric MDS, which very close to the classical Torgerson
method. If we want to compute the p−dimensional MDS solution, we first compute
CF and then use the dominant p eigenvalues and corresponding eigenvectors as
our solution. This method has no local minimum problems and provides nested
solutions. We can compute the FDS solution by applying algorithm (4) with p ≥
rF(∆), for instance with p = n.

It seems difficult to derive more precise information about the FDS rank. The
Gower Conjecture is that rF(∆) is less than or equal to the Torgerson rank rT (∆),
which is the number of positive eigenvalues of −1

2 Jn∆
(2)Jn, with Jn the centering

operator, and ∆(2) the matrix of squared dissimilarities.

More insight can be gained by looking at the stationary equations of the FDS prob-
lem. Using the theory in Rockafellar [1970, Theorem 31.4], we see that CF is the
unique solution of

V − B(C) & 0,(6a)

C & 0,(6b)

C(V − B(C)) = 0.(6c)

Thus

rF(∆) ≤ n − rank(V − B(CF)).
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Theorem 2.2. If X = V+B(X)X and B(X) . I then X is the global minimizer of σ.

Proof. If X satisfies the conditions in the theorem, then XX′ satisfies (6), and thus
XX′ = CF . �

3. U    

The X, θ, A parametrizations. Invariance under choice of basis.

It is explained in De Leeuw [1993] that the metric multidimensional scaling prob-
lem can be reformulated advantageously by using a basis of configuration matri-
ces. We repeat this argument here. Because of inderterminacy due to rotation and
translation the space of configuration matrices has dimension m = np − 1

2 p(p + 1).
Suppose Y1, · · · ,Ym is a basis for this space, then we can write any X as a linear
combination X = θ1Y1+ · · ·+ θmYm and we can think of stress as a function of θ. In
this formulation there are no indeterminacies any more due to rotation and trans-
lation, because these have been eliminated by choosing the basis. Moreover we
have gained some generality, because we can use the same notation to restrict the
configuration to any subspace of the space of configuration matrices by choosing
a suitable basis. Thus we can incorporate some of the restrictions discussed, for
example, by De Leeuw and Heiser [1980]. In the future m will refer to the number
of elements in any basis we have chosen.

We make an additional notational simplification. Use

d2
i j(X) = (ei − e j)′XX′(ei − e j) =

m∑
s=1

m∑
t=1

θsθt(ei − e j)
′YsY

′
t (ei − e j)

to define the matrices Ci j, of order r, by

(7) {Ci j}st = (ei − e j)
′YsY

′
t (ei − e j).

The matrices Ci j are symmetric and positive semi-definite. Moreover di j(X) =√
θ′Ci jθ.

Some additional generality can be gained by not necessarily fitting all dissimilari-
ties, but a selected subset of them. If we do this, we can also get rid of the double
indexing, which is just a nuisance. Combining our results so far, we define the
(metric, Euclidean) multidimensional scaling problem as minimization of stress,
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given by

(8) σ(θ) =
1
2

n∑
i=1

wi(δi −
√
θ′Ciθ)2.

Minimizing stress defined in this way applies to any set of positive semi-definite
matrices Ci, although abviously we will be most interested of course in matrices
defined by (7).

We continue to simplify the problem somewhat more. Clearly we can suppose
without loss of generality that the wi are positive. In addition, we can use the fact
that if we replace the Ci by C̃i = S ′CiS we are still solving the same problem. We
have, with obvious notation, σ(θ) = σ̃(S −1θ). This shows we can assume that there
is no non-zero vector in the intersection of the null spaces of the Ci. If there was
such a vector, we could find an S such that all C̃i has zeroes in their last row and
column, and we could formulate the problem using a θ with fewer elements.

In fact, we can assume without loss of generality, by choosing S appropriately, that
the matrices Ci satisfy

n∑
i=1

wiCi = I.

And finally, again without loss of generality, we can assume that the dissimilarities
are scaled in such a way that

1
2

n∑
i=1

wiδ
2
i = 1,

With these simplification

(9a) σ(θ) = 1 − ρ(θ) +
1
2
θ′θ,

where

(9b) ρ(θ) =
n∑

i=1

wiδi
√
θ′Ciθ.

This is the final form of the MDS loss function and minimization problem we will
study in this paper.
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4. C

5. S   

6. D

One important property of stress is that it is not smooth. It is continuous every-
where, but it is not differentiable at points where θ′Ciθ = 0 for some i. Until further
notice we will suppose that θ is such that θ′Ciθ > 0 for all i, and also that δi > 0
for all i. We will deal with the consequences of not making these assumptions in a
later section.

For the derivatives of stress at θ we find

(10a) Dσ(θ) = θ − B(θ)θ,

where

(10b) B(θ) =
n∑

i=1

wiri(θ)Ci,

and

(10c) ri(θ) =
δi

di(θ)
.

are the residuals. Also define r+(θ) and r−(θ) as the maximum and minimum resid-
ual.

We wll first look at stationary points, that is, points where the derivatives are zero.
1

Theorem 6.1. If r+(θ) < 1 or if r−(θ) > 1 then θ is not a stationary point.

Proof. θ is a stationary point of stress if B(θ)θ = θ, i.e. if θ is an eigenvector
with unit eigenvalue of B(θ). But if r+(θ) < 1 then B(θ) � r+(θ)I ≺ I and thus
B(θ) cannot have an eigenvalue equal to one. In the same way, if r−(θ) > 1 then
B(θ) � r−(θ)I � I. �

The theorem says that if the distances are all less than or equal to the dissimilar-
ities, with at least one inequality strict, we cannot be at a stationary point. The

1We use symbols like � for the usual ordering of matrices. Thus A � B means that A − B is

positive definite, A � B means that B − A is positive semidefinite, and so on.
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same thing is true if the distances are all larger than or equal to the dissimilarities.
Observe that the set of θ for which di(θ) ≤ δi for all i is a convex intersection of
ellipsoids, containing the origin, while the set of θ such that di(θ) ≥ δi for all i
is the intersection of the complements of these ellipsoids. Thus there is a convex
set containing the origin which has no stationary points, and a sphere with center
at the origin outside of which there are no stationary points. We will get more
information by looking at the second derivatives.

For the second derivatives at θ we find

(11a) D2σ(θ) = I − H(θ),

where

(11b) H(θ) =
n∑

i=1

wiri(θ)
{

Ci −
Ciθθ

′Ci

θ′Ciθ

}
.

Here are some simple, and mostly obvious, facts about the second derivatives.

• By Cauchy-Schwartz we see that 0 . H(θ) � B(θ), for all θ. Thus I−B(θ) �
D2σ(θ) � I.
• H(θ)ξ = 0 if and only if ξ = θ, i.e. H(θ) has only a single zero eigenvalue,

and is of rank p − 1.
• If σ has a local minimum at θ, then D2σ(θ) � 0 and thus H(θ) � I. If the

local minimum is strict, thenD2σ(θ) � 0 and H(θ) ≺ I.
• For any positive number λwe have H(λθ) = λ−1H(θ). Thus limλ→∞D2σ(λθ) =

I and for all sufficiently large λ the Hessian will be positive definite.Moreover
if λ is sufficiently small, D2σ(λθ) will have one eigenvalue equal to one
(corresponding with eigenvector θ), while the other eigenvalues will be
negative.

(1 − r+(θ))I + r+(θ)P(θ) � D2σ(θ) � (1 − r−(θ))I + r−(θ)P(θ)

where

P(θ) =
n∑

i=1

wi
Ciθθ

′Ci

θ′Ciθ

Observe that if δi = di(θ) for all i, that is, if we have perfect fit, thenD2σ(θ) = P(θ).
By Cauchy-Schwartz again, P(θ) � I for all θ.

The new parametrization also makes it possible to calculate third-order partial
derivatives.The resulting expression is quite compact, while it obviously will be
very unattractive in the original configuration parametrization. Define the vectors
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where ηi = Ciθ. The elements of Ci are written as ci
αβ. We also use ei(θ) for θ′Ciθ,

that is, for d2
i (θ).

∂3σ

∂θα∂θβ∂θγ
= −
∂hαβ(θ)
∂θγ

=

−

n∑
i=1

wi
ri(θ)
ei(θ)

[
ηiγ(θ)ciαβ − ηiα(θ)ciβγ − ηiβ(θ)ciαγ +

ηiα(θ)ηiβ(θ)ηiγ(θ)
ei(θ)

]
,

and thus
n∑
α=1

n∑
β=1

n∑
γ=1

ξαξβξγ
∂3σ

∂θα∂θβ∂θγ
=

n∑
i=1

wiri(θ)
(
ξ′Ciθ

θ′Ciθ

) [
ξ′Ciξ −

(ξ′Ciθ)2

θ′Ciθ

]
.

Compare this with
n∑
α=1

n∑
β=1

ξαξβhαβ(θ) =
n∑

i=1

wiri(θ)
[
ξ′Ciξ −

(ξ′Ciθ)2

θ′Ciθ

]
.

7. D D

Although distance di(θ) =
√
θ′Ciθ is not differentiable at zero, the one-sided direc-

tional derivatives

∇di(θ, ξ) = lim
λ↓0

di(θ + λξ) − di(θ)
λ

exist everywhere. In fact

∇di(θ, ξ) =

di(ξ) if di(θ) = 0,

ξ′Ciθ/di(θ) otherwise.

Suppose I0(θ) is the set of indices for which θ′Ciθ = 0, and I+(θ) is the rest. Then
extend the definition of B, given before in (10b).

B(θ) =
n∑

i=1

wisi(θ)Ci,

where

si(θ) =

ri(θ) if i ∈ I+(θ),

arbitrary if i ∈ I0(θ).

Using this B, the Guttman transform is generalized as Γ(θ) = B(θ)θ. Observe that
the Guttman transform is the same, no matter what we choose for the si(θ) with
i ∈ I0(θ). With these definitions

(12) ∇σ(θ, ξ) = ξ′(θ − Γ(θ)) −
∑

i∈I0(θ)

wiδidi(ξ)
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Using the directional derivative we can prove two interesting results, orginally due
to De Leeuw [1993] and De Leeuw [1984]. The proofs are more elegant and
shorter, because of the alternative parametrization of the MDS problem.

Theorem 7.1. σ has a local maximum at zero, and no other local maxima.

Proof. At zero we have ∇σ(0, ξ) = −ρ(ξ) ≤ 0, so stress decreases in every di-
rection. Suppose θ , 0 is a local maximum. Then σ(θ + λθ) should have a local
maximum at λ = 0. But σ(θ+λθ) is a convex quadratic in λ, which means it cannot
have a local maximum. �

Theorem 7.2. If δi > 0 for all i, then di(θ) > 0 at a local minima.

Proof. If σ has a local minimum at θ the one-sided directional derivatives in all
directions are non-negative. Thus, from (12), a necessary condition for a local
minimum is that θ is a fixed point of the Guttman transform, as before, and that∑

i∈I0(θ) wiδidi(ξ) = 0. Suppose di(θ) = 0 and δi > 0 at a local minimum. Choose ξ
such that di(ξ) > 0. Then ∇σ(θ, ξ) ≤ −wiδidi(ξ) < 0, which means ξ is a descent
direction, and θ canot be a local minimum. �

8. S

9. H

We have seen that the stationary equations D(θ) = 0 define the non-linear eigen-
value problem B(θ)θ = θ. The relationships with eigenvalue problems can be made
even more explicit.

Theorem 9.1. Suppose θ̂ maximizes ρ(θ) over the sphere θ′θ = 1, or, equivalently,
over the ball θ′θ ≤ 1. Then

θ̈ =

[
ρ(θ̂)
θ̂′θ̂

]
θ̂

minimizes σ(θ).

Proof. We see that for λ ≥ 0

σ(λθ) = 1 − λρ(θ) +
1
2
λ2θ′θ,

and consequently

min
λ≥0
σ(λθ) = 1 −

ρ2(θ)
θ′θ
.
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Thus

min
θ
σ(θ) = 1 −

[
max
θ

ρ(θ)
√
θ′θ

]2

.

Because ρ is positive homogeneous, maximizing the ratio is equivalent to maxi-
mizing ρ over the unit sphere. �

10. N  / 

11. P  S

We can make our results more specific if we look at the case in which θ only has
two elements. In an MDS context, this means we look at configurations in the
two-dimensional subspace X = θ1Xi + θ2X2. We first look at contourplots of σ as
a function of θ1 and θ2. On left in Figure 1 we see a global picture of the function,
very much like a convex quadratic valley with a single little hill in the center. The
valley is not equally deep everywhere, and on the right in Figure 1 we zoom in on
the deepest spot.
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F 1. Contourplots

The same two regions are plotted in Figure 2, this time as wireframe plots. We
basically see the same qualitative features, in a slightly different form.

This suggest another way to plot the function. We draw the contour lines of ρ and
see where they intersect the unit circle. The contour lines will define concentric
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convex sets, and we can find the largest contour still intersecting the circle to define
the maximum of ρ, and thus the minimum of σ. This is illustrated in Figure 3. On
the left we see the global picture again, with the contour lines of ρ drawn at 0.1
intervals. The picture shows that the maximum of ρ on the unit circle is a little
over 0.90, and we zoom in on the right by drawing contour lines at 0.01 intervals,
showing that the maximum ρ is about 0.92, corresponding wih a σ equal to 0.15.
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This representation is still somewhat wasteful, since we are really only interested
in the θ on the unit circle. Thus we can take θ1 = sin(ζ) and θ2 = cos(ζ) and plot ρ
as a function of 0 ≤ ζ ≤ π. This is shown in Figure 4, where again we see that the
maximum of ρ is about 0.92. Observe there is a local minimum of ρ where it is not
differentiable.

xseq

ys
eq

0.905

0.910

0.915

0.920

0.925

0 1 2 3

F 4. Rho on the Circle

12. IMDS

In the inverse MDS problem we have a given θ and we are looking for the δi for
which this θ is a local minimum. Thus instead of solving B(θ)θ = θ for given δ we
solve for δ for given θ. Define ui = Ciθ, and collect the ui as columns in an m × n
matrix U. Now find v such that Uv = 0.

Theorem 12.1. The general solution for δ is δi = di(θ)(1 + 1
wi

vi).

13. M

If we introduce the Guttman transform [Guttman, 1968] by Γ(θ) = B(θ)θ, then θ is
stationary if it is equal to its Guttman transform (that is, if it is a fixed point of the
Guttman transform).

The stationary equations θ = Γ(θ) suggest the iterative algorithm

(13) θ(k+1) = Γ(θ(k)).
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This was first proposed in Guttman [1968], but a convergence proof was not given
until De Leeuw [1977]. The proof was based on the represenation in the previous
section, which reduces the problem to maximizing a ratio of norms. For maximiz-
ing such a ratio, the algorithm of Robert [1967] is available and immediately shows
convergence.

A simpler proof for the Euclidean case was developed by De Leeuw and Heiser
[1977] and further streamlined by De Leeuw and Heiser [1980].

We can minorize ρ by a family of linear functions and majorize it by a family of
quadratic functions.

Theorem 13.1. For all θ, ξ we have

ξ′B(ξ)θ ≤ ρ(θ) ≤
1
2
{θ′B(ξ)θ + ρ(ξ)}

with equality on both sides if and only if θ = ξ.

Proof. This first inequality follows from applying Cauchy-Schwartz to
√
θ′Cθ, the

second from applying the arithmetic-geometric mean inequality. �

σ(θ) ≤ σ(ξ) + (θ − ξ)′Dσ(ξ) +
1
2

max
0≤λ≤1

(θ − ξ)′D2(λξ + (1 − λ)θ)(θ − ξ)

≤ σ(ξ) + (θ − ξ)′Dσ(ξ) +
1
2

(θ − ξ)′(θ − ξ).

and thus

σ(θ) ≤ σ(ξ) −
1
4

(ξ −Dσ(ξ))′(ξ −Dσ(ξ))

+
1
2

(θ − (ξ −Dσ(ξ))′(θ − (ξ −Dσ(ξ))

Now use ξ −Dσ(ξ) = Γ(ξ) to obtain

σ(θ) ≤ σ(ξ) −
1
4
Γ(ξ)′Γ(ξ) +

1
2

(θ − Γ(ξ))′(θ − Γ(ξ))

Our alternative parametrization also makes it easier to apply the basic theorem by
Ostrowski [1966], and simplifies the results of De Leeuw [1988]. We write‖A‖∞
for the sup-norm of a square matrix, i.e. for the modulus of the largest eigenvalue.
Remember that a point of attraction of

Theorem 13.2. Suppose ‖H(θ)‖∞ < 1. Then θ is a point of attraction of the itera-
tion (13). Moreover, convergence is linear, with rate ‖H(θ)‖∞.
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Proof. Ortega and Rheinboldt [1970, section] �

14. N’M

The update iterations for Newton’s method take a simple form in our current parametriza-
tion.

θ(k+1) = θ(k) − [I − H(θ(k))]−1(θ(k) − B(θ(k))θ(k)) = [I − H(θ(k))]−1Γ(θ(k))

Nonmonotone line search. Safeguarding. If H is small, then Newton is majoriza-
tion.

15. E

For our examples we will analyze mapping four points in two dimensions. As a
basis for the configuration matrices we use five matrices, code in R to compute the
basis is in the appendix.

The first example takes all dissimilarities equal. Our algorithms converge to three
types of stationary points. The global minimum are four points in the corners of a
square. Stress is .0286 and the smallest eigenvalue of the Hessian is 0.1595. There
is also a non-isolated local minimum formed by three points in the corners of an
equilateral triangle, and the fourth point in the centroid of the triangle. This has
stress 0.0670, and the smallest eigenvalue of the Hessian is zero (which is why
this is a non-isolated minimum). Finally there is a saddle point, with the four
points equally spaced on a line. The stress is 0.1667 and the smallest eigenvalue is
−0.7977. Let’s call these types of stationary points A,B, and C.

Our algorithms are Newton, Majorization, Relaxed majorization with factor 1.5,
Relaxed majorization with factor 1.9, Hybrid with 10 majorization steps, Hybrid
with 25 majorization steps. We did one hundred runs of each, starting with different
random θ. We stoped iterating when the largest component of the gradient had
absolute value less than 1e-6.

The results are interesting. Newton converges very fast, but has serious local min-
imum (and even saddle point) problems. Saddle points are points of repulsion for
the majorization algorithm, and even non-isolated stationary points such as the tri-
angle seems to repulse the majorization iterations. Majorization is pretty fast in
this case, because we have linear convergence to the square with rate 1 − 0.1595 =
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Algorithm Mean It StDev It Square Triangle Line

Newton 9.4 3.4 36 51 13
Majorization 62.3 10.4 100 0 0

Relax 1.5 152.5 264.7 87 13 0
Relax 1.9 223.2 226.5 80 20 0

Hybrid 10 14.3 2.4 80 18 2
Hybrid 25 27.4 1.6 93 7 0

0.8404. The relaxed iterations are disappointing, but further analysis explains why
this happens. If iterations converge to the triangle with centroid, they do so sub-
linearly. If they converge to the square, then relaxation with factor 1.9 gives rate
0.6968 and relaxation with rate 1.5 gives rate 0.7606. Thus convergence rate does
become better, but unfortunately the frequency of the triangle increases. The two
hybrid methods work pretty well. On the average they need only about 3 addi-
tional Newton iterations, and with enough majorization iterations the undesirable
solutions become rare.

We get the same result if we iterate to higher precision (1e-10). Newton uses on
the average 15.4 iterations, but it only converges to the square in 30% of the cases.
Majorization uses 113.5 iterations, and always finds the square.

In our second example we take dissimilarities equal to the distances between the
four points at the corners of the unit square.
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A A. C

To create the basis and the C-matrices we use

makeX<− f u n c t i o n ( n , p ) {

2 r<− ( p*n ) −(p* ( p+1) / 2) ; l<−1

x<−array ( 0 , c ( n , p , r ) )

4 f o r ( i i n 1 : p )

{

6 qrq<−qr .Q( qr ( outer ( 1 : ( n− i +1) , 0 : ( n− i ) , " ^ " ) ) ) [ , 2 : ( n− i

+1) ]

f o r ( k i n 1 : ( n− i ) )

8 {

x [ 1 : ( n− i +1) , i , l ]<−qrq [ , k ]

10 l<− l+1

}

12 }

re turn ( x )

14 }

16 makeCfromX<− f u n c t i o n ( x ) {

n<−dim ( x ) [ 3 ] ; m<−dim ( x ) [ 1 ] ; mm<−m* (m−1) / 2

18 c<−array ( 0 , c ( n , n ,mm) )

f o r ( s i n 1 : n ) f o r ( t i n 1 : n )

20 {

prd<−x [ , , s ]%*%t ( x [ , , t ] ) ; k<−1

22 f o r ( i i n 1 : ( m−1) ) f o r ( j i n ( i +1) :m)

{

24 c [ s , t , k ]<−prd [ i , i ]+ prd [ j , j ] −( p rd [ i , j ]+ prd [ j

, i ] )

k<−k+1

26 }

}

28 re turn ( c /m)

}

The program to perform the various algorithms is
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smacof<− f u n c t i o n ( d e l t a , p=2 , t h e t a=" c " , eps=1e−6 , t y p e=" s " ,

r e l a x =1 .9 , v e r b o s e=FALSE , sw i t ch =0) {

2 d e l t a<− d e l t a / s q r t ( sum ( d e l t a ^2 ) ) ; i t e l<− 1 ; nn<− l e n g t h ( d e l t a )

; n<−(1+ s q r t (1+8 *nn ) ) / 2 ; m<− ( p*n ) −(p* ( p+1) / 2)

xxx<−makeX ( n , p )

4 ccc<−makeCfromX ( xxx )

i f ( t h e t a==" c " ) t h e t a<−rep ( 1 ,m)

6 e l s e i f ( t h e t a==" r " ) t h e t a<−r c h i s q (m, 1 )

r ep ea t {

8 h<−b<−matrix ( 0 ,m,m)

f o r ( i i n 1 : nn )

10 {

cc<−ccc [ , , i ]

12 v<−as . v e c t o r ( cc%*%t h e t a )

d<−sum ( t h e t a *v )

14 r<− d e l t a [ i ] / s q r t ( d )

b<−b+ r * cc

16 h<−h+ r * ( cc −( outer ( v , v ) / d ) )

}

18 g u t<−b%*%t h e t a

i f ( t y p e==" s " ) ups<−g u t

20 i f ( t y p e==" a " ) ups<− ( r e l a x * g u t ) −( r e l a x −1 . 0 ) * t h e t a

i f ( t y p e==" n " ) ups<− s o l v e ( diag (m)−h , g u t )

22 i f ( t y p e==" b " ) i f ( i t e l < sw i t ch ) ups<−g u t e l s e ups<− s o l v e (

diag (m)−h , g u t )

ops<−max ( abs ( t h e t a −ups ) )

24 grd<−max ( abs ( t h e t a −g u t ) )

s t r<−1+sum ( t h e t a ^2 )−2*sum ( t h e t a * g u t )

26 i f ( v e r b o s e )

c a t ( " I t e r a t i o n :� " , formatC ( i t e l , d i g i t s =5 , wid th =3) ,

28 " Change :� " , formatC ( ops , d i g i t s =10 , wid th =15 , format=" f

" ) ,

" Maxgrad :� " , formatC ( grd , d i g i t s =10 , wid th =15 , format="

f " ) ,

30 " S t r e s s :� " , formatC ( s t r , d i g i t s =10 , wid th =15 , format=" f

" ) , " \ n " )
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i f ( grd<eps ) break
32 t h e t a<−ups

i t e l<− i t e l +1

34 }

eb<−e i g e n ( b )$ v a l u e s ; eh<−e i g e n ( diag (m)−h )$ v a l u e s

36 c a t ( " I t e r a t i o n :� " , formatC ( i t e l , d i g i t s =5 , wid th =3) ,

" Change :� " , formatC ( ops , d i g i t s =10 , wid th =15 , format=" f " ) ,

38 " Maxgrad :� " , formatC ( grd , d i g i t s =10 , wid th =15 , format=" f " ) ,

" S t r e s s :� " , formatC ( s t r , d i g i t s =10 , wid th =15 , format=" f " ) , " \ n " )

40 c a t ( " E i g e n v a l u e s �B:� " , formatC ( eb , d i g i t s =10 , wid th =15 ,

format=" f " ) , " \ n " )

c a t ( " E i g e n v a l u e s �D:� " , formatC ( eh , d i g i t s =10 , wid th =15 ,

format=" f " ) , " \ n " )

42 x<−matrix ( 0 , n , p )

f o r ( i i n 1 :m) x<−x+ t h e t a [ i ] * xxx [ , , i ]

44 l i s t ( i t e l = i t e l , s t r e s s= s t r , e v a l=eh [ l e n g t h ( eh ) ] , s o l=x )

}
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