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The Data
The data we study are measurements of n objects 
on each of m variables. This corresponds with the 
spreadsheet format in many software packages and 
with the data-frame in S/R.

In our setup all data are categorical, which means 
each variable maps the observations into a finite 
number of categories.  Categories can be a finite 
subset of the reals, a finite ordered set, the set 
{0,1}, or just an arbitrary finite set. 

Observe the finiteness assumption can be made 
without loss of generality.

• legislators and votes

• students and multiple choice items

• animals and morphology

• plants and transects

• artifacts and graves

• interviewees and survey questions

Examples Coding

G = (G1 | · · · | Gm)

The submatrices G(j) are indicator matrices (or dummies) 
for variables. They indicate which category the objects are 
in. They are binary, add up to one row-wise, and have 
orthogonal columns. Each indicator matrix codes a 
partitioning of the objects.

Variable j has k(j) categories, thus G(j) is n x k(j).

There can be missing data (incomplete indicators).



Homogeneity

Objects are represented as points in low-dimensional 
Euclidean Space. 

In homogeneity or clumping techniques we want the subsets 
of objects that are in the same category to be
“small”. Or: we want within-category distances to be 
relatively small. And we want this for all variables 
simultaneously.

Many definitions of “small” are possible, we use the size of 
the Gifi star.

The Gifi System

min
X′X=I

min
Yj

m∑

j=1

SSQ(X − GjYj)

Minimize star-size: the sum of the squared distances of 
the object points to the centroid of their category.

In addition the Gifi System (Gifi, 1990, also Michailides 
and De Leeuw, Statistical Science,1998) allows for rank 
and additivity constraints on the Y(j).  This makes it 
possible to have regression, principal component 
analysis, canonical analysis, and so on as special cases.

Homogeneity analysis with Gifi Stars is also known as 
multiple correspondence analysis.

• Advantage: computationally simple (SVD and ALS). 
Matrix calculations. Using sparsity.

• Advantage: all of classical descriptive MVA, extended 
to mixed level data. 

• Disadvantage: a normalization is needed (and rather 
arbitrary).

• Disadvantage: horseshoes (a least squares effect).

• Disadvantage: not maximum likelihood and no model 
(if you feel that is important).

• Disadvantage: Statistical stability analysis (standard 
errors, confidence intervals) is available, but tedious.
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Separation

We now use a probability model for the same type of
data, summarizing 150 years of  accumulated wisdom 
(or at least practice). The probability that                 is 

πij!(X, Y ) =
exp(f(xi, yj!))

∑kj

ν=1
exp(f(xi, yjν))

gij! = 1

A similar expression can be used for ordered categories, 
using a cdf such as the normal or the double exponential.

Deviance

where the data are as before (indicators, dummies) 
and satisfy, for all i and j,

We want to minimize

D = −2
n∑

i=1

m∑

j=1

kj∑

!=1

gij! log πij!(X, Y )

kj∑

!=1

gij! = 1



We call this separation methods because we have 
minimum loss (perfect fit) if f(x,y) is homogeneous and 
if the solution satisfies the following inequalities

For most geometric models, using inner products 
or distances, we have homogeneity, and the 
inequalities have a straightforward geometrical
interpretation in terms of separation.

gij!{f(xi, yj!) − f(xi, yjν)} ≥ 0 ∀i, j, !, ν

Algorithms
So far, many ad hoc techniques have been proposed 
to compute maximum likelihood estimates for 
various specific models. Some work well, some don’t.

Our purpose in this presentation is to present a 
general approach based on quadratic majorization. This 
class of algorithms has the desirable property that it 
computes maximum likelihood estimates by solving  
a sequence of least squares problems, which are 
generally much simpler. It also produces an algorithm
which is globally convergent.

Majorization:  A digression
The problem we want to solve

Now suppose there is a majorization function             
such that

ψ(θ, ξ)

min
θ∈Θ

φ(θ)

φ(θ) ≤ ψ(θ, ξ) ∀θ, ξ ∈ Θ

φ(θ) = ψ(θ, θ) ∀θ ∈ Θ

Finding a suitable majorization function is partly a box of 
tricks, and partly art (like integration). Quadratic 
majorization is one of the main tricks in the box.

Define the algorithm

θ(k+1) = argmin
θ

ψ(θ, θ(k))

Then (sandwich inequality)

φ(θ(k+1)) ≤ ψ(θ(k+1), θ(k)) ≤ ψ(θ(k), θ(k)) = φ(θ(k))

Thus minimizing the majorization function decreases 
the objective function. Under some additional 
conditions, this guarantees convergence of the 
algorithm to a local minimum.



Figure 1: Majorization

1

Quadratic Majorization

φ(θ) ≤ φ(ξ) + (θ − ξ)′Dφ(ξ) +
1

2
(θ − ξ)′H(θ − ξ)

In this presentation we are interested in the case where we
can find a matrix H such that

Then

which provides a majorization function quadratic in    .
Completing the square gives

D2φ(θ) ≤ H ∀θ ∈ Θ

φ(θ) ≤ φ(ξ) −
1

2
θ̃′H θ̃ +

1

2
(θ − θ̃)′H(θ − θ̃)

θ

with θ̃ = ξ − H−1
Dφ(ξ)

Logit Majorization

Theorem: Suppose

πk(x) =
exp(xk)

∑K

!=1
exp(x!)

x ∈ R
K

f(x) = −

K∑

k=1

yk log πk(x)

then

0 ≤ D2f(x) = Π(x) − π(x)π(x)′ ≤
1

2
I.

Probit Majorization

Theorem:  Suppose                                      and−∞ ≤ α < β ≤ +∞

f(x) = − log[Φ(β + x) − Φ(α + x)]

then 0 < f ′′(x) < 1 ∀x

Although we do not use this result in the presentation, 
we’ll throw it in for good measure.



Where does Gifi come in ?

we have the deviance for PCA. But other functions 
(besides the inner product) are possible too. And we can 
have mixed level data (some logit, some probit, some 
tobit), and constraints on the Y as in Gifi.

D = −2
n∑

i=1

m∑

j=1

kj∑

!=1

gij! log
exp(f(xi, yj!))∑kj

ν=1
exp(f(xi, yjν))

f(xi, yj!) = τj! + x′

iyj

If

The loss function is of the general form

where we have an upper bound B for the second derivative 
of g. Quadratic majorization leads to the minimization of 

in each iteration, where

D =
n∑

i=1

m∑

j=1

g(f(xi, yj))

S =
n∑

i=1

m∑

j=1

[f(xi, yj) − h(x̃i, ỹj)]
2

h(x̃i, ỹj) = f(x̃i, ỹj) −
1

B
g′(f(x̃i, ỹj))

is evaluated at the current solution (with the tilde).

And thus ...
We have replaced logit/probit/tobit maximum likelihood 
by iterative least squares, and often we know how to 
solve these LS subproblems (in PCA, use the SVD).

Two additional observations are very useful here. 

First, there is no need to actually minimize the 
majorization function, it suffices to decrease it. 

Second, it is easy to incorporate missing data. This last 
observation makes it possible to analyze rank orders and
more general choice structures.


