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1. D

Suppose F and G are two tables with positive frequencies. Define the Pois-
son distance between F and G as

D(F,G) = 2
n∑

i=1

m∑
j=1

fi j log
fi j

gi j
− ( fi j − gi j).

Observe that D(F,G) ≥ 0, with equality if and only if F = G. Moreover
D(F,G) , D(G, F). If F and G are close then Poisson distances are close
to chi-square distances. More precisely

D(F,G) =
n∑

i=1

m∑
j=1

( fi j − gi j)2

fi j
+ o(‖G − F‖2),

as well as

D(F,G) =
n∑

i=1

m∑
j=1

( fi j − gi j)2

gi j
+ o(‖G − F‖2).

We can easily generalize the Poisson distance to cases in which some ele-
ments of F are zero, by using limx→0 x log x = 0. We can also generalize to
incomplete tables, by summing only over the set of index pairs for which
we do have information.

Now consider the case in which F is an observed table of frequencies, which
may have zeroes and which may be incomplete. The elements of G are
given by a parametric family of tables, depending on parameters θ. We
write λi j(θ) for the elements of G(θ). If theta varies over an open subset Θ
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of Rp, then G(θ) varies over a manifold G in the positive orthant of Rn×m.
The problem we study in this paper is to project F on this manifold G, i.e.
to find

inf
G∈G
D(F,G) = inf

θ∈Θ
D(F,G(θ)),

and to find

argmin
G∈G

D(F,G) = argmin
θ∈Θ

D(F,G(θ)),

if the minimum is attained. Observe

D(F,G(θ)) = 2
n∑

i=1

m∑
j=1

fi j log
fi j

λi j(θ)
− ( fi j − λi j(θ)),

and in order to solve the minimization problem it suffices minimize the
simpler function

LP(F,G(θ)) = −
n∑

i=1

m∑
j=1

{ fi j log λi j(θ) − λi j(θ)},

which is the negative Poisson log-likelihood. If the observed frequencies
have a Poisson distribution, then our estimates are maximum likelihood es-
timates.

2. M  R  C E

We now specialize the parametric models we fit to be of the form

λi j(θ) = µαiβ jγi j(θ).

Thus the model includes a main effect µ, row effects αi, column effects β j,
and a parametrized interaction γi j(θ). Using this specification we can derive
the following useful results. We have

D(F,G(µ, α, β, θ)) =

µ

n∑
i=1

m∑
j=1

αiβ jγi j(θ) − f•• log µ −
n∑

i=1

m∑
j=1

fi j logαiβ jγi j(θ),
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where replacing an index with a bullet means summation over the index.
This is minimized over µ at

µ̂ =
f••∑n

i=1
∑m

j=1 αiβ jγi j(θ)
.

This implies that minimizingD(F,G(µ, α, β, θ)) can be done by minimizing

LM(F,G(α, β, θ)) = −
n∑

i=1

m∑
j=1

pi j log
αiβ jγi j(θ)∑n

k=1
∑m
`=1 αkβ`γk`(θ)

which is the negative log-likelihood of a multinomial model for the table
and we use pi j = fi j/ f••.

We can take this one step further by writing

D(F,G(α, β, θ)) =
n∑

i=1

αi

m∑
j=1

β jγi j(θ) −
n∑

i=1

fi• logαi −

n∑
i=1

m∑
j=1

fi j log β jγi j(θ),

where we have absorbed the µ into the αi. This is minimized at

α̂i =
fi•∑m

j=1 αiβ jγi j(θ)
,

which implies that we can minimizeD(F,G(µ, α, β, θ)) by minimizing

LPM(F,G(β, θ)) = −
n∑

i=1

fi•

m∑
j=1

p j|i log
β jγi j(θ)∑m
`=1 β`γi`(θ)

which is the negative log-likelihood of a product multinomial model for the
rows of the table and we use p j|i = fi j/ fi•. A similar derivation could be
applied, of course, to finding a product multinomial model for the columns
by eliminating β.

So we have seen in this section that allowing row and column effects shows
that we are not just computing maximum likelihood estimates of the param-
eters in the Poisson case, but also in the multinomial and product multino-
mial cases (for suitably normalized versions of the same parametric model).
Or, to put it differently, although we start by using Poisson distances be-
tween tables, we can show that our treatment covers multinomial and prod-
uct multinomial distances between tables as well.
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We concluded the section with a slightly more general result. We need
this for the extension of our procedures to include versions of multiple cor-
respondence analysis. Suppose we have more than one table of observed
frequencies. In particular, we will be interested in the case in which we
have tables Fr, with r = 1, · · · s, which all have n rows, but they may have a
different number of columns mr. Consider the row and column effect model

λi jr(θ) = αirβ jrγi jr(θ).

The Poisson distance between the observed and parametrized table can be
written as

D(F,G(α, β, θ)) =
n∑

i=1

s∑
r=1

αir

mr∑
j=1

β jrγi jr(θ)−

n∑
i=1

s∑
r=1

fi•r logαir −

n∑
i=1

mr∑
j=1

s∑
r=1

fi jr log β jγi jr(θ),

and minimizing out α gives the product multinomial negative log-likelihood

LPM(F,G(β, θ)) = −
n∑

i=1

s∑
r=1

fi•r

mr∑
j=1

p j|ir log
β jrγi jr(θ)∑mr
`=1 β`rγi`r(θ)

.

3. B T

Observe that the Poisson distance can also be used to measure distance be-
tween binary tables, which only consists of zeroes and ones. We simply
treat them as a special case of frequency tables.

This is especially interesting in the case in which we have a set of indicator
matrices(or dummies), i.e. a number of binary n × mr tables whose rows
add up to one. The product multinomial negative log-likelihood from the
previous section becomes

LPM(F,G(β, θ)) = −
n∑

i=1

s∑
r=1

log
β jirrγi jirr(θ)∑mr
`=1 β`rγi`r(θ)

,

where jir is the unique index for which fi jr = 1. Now suppose

(1) β jirrγi jirr(θ) =
mrmax
`=1
β`rγi`r(θ),
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and suppose γ is positively homogeneous, in the sense that for each τ > 0
and for some u > 0 we have γ(τθ) = τuγ(θ). Then, as τ→ ∞,

inf
τ
LPM(F,G(β, τθ)) = lim

τ→∞
LPM(F,G(β, τθ)) = −ns,

and the minimum is not attained. Clearly in that case the infimum of
D(F,G(α, β, θ)) is zero, and we have perfect fit. Thus, for homogeneous
models, we can interpret our Poisson distance methods as ways to fit the
system of inequalities (1). In most cases the system will not actually be
solvable, and we compute an approximate solution. If the system is solv-
able, then our method will find the infimum by letting parameters go to
infinity.

In the special case in which the indicator matrices have only two columns,
the system becomes

(2) β jirrγi jirr(θ) > β`irrγi`irr,

where jir is the unique index for which fi jr = 1 and `ir is the unique index
for which fi jr = 0.
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