SHARP LOCAL QUADRATIC MAJORIZATION

JAN DE LEEUW

ABSTRACT. The majorization principle provides us with a way to find
global quadratic approximations to functions, and globally convergent
algorithms. The main disadvantage iof majorization algorithms is their
slow local convergence. Moreover majorizers may not exist. In this
note we develop some theory which can be used to improve the local
properties of majorization methods, while retaining global and monotone
convergence. Some example, mostly of functions on the real line, are

discussed in detail.

1. INTRODUCTION

In this paper we study iterative minimization algorithms with a common
structure. Say we are minimizing a real valued function f on a set .. In
each iteration we have a current best approximation y € .% to the minimizer.
We now use an auxiliary function g that approximates f at y in some sense,
and we find the update y© of y by minimizing g over x. If y itself is a
minimizer of g, we stop. If we do not stop we make a new auxiliary function

that approximates f in y*, and so on.

To simplify matters we shall only study one-dimensional unconstrained
minimization in this paper, i.e. we want to find the minimum of f on the
real line. To further simplify, we assume in addition that f is everywhere
differentiable.

Functions of a single variable are written simply as f, or as f(e). A function

of two real variables is g(e,e). For a function of two variables we write
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g(e,y) for the “horizontal” cross-section where the second variable is fixed
at y, and g(x, e) for the corresponding “vertical” cross section. Thus g(x,y)

is a single real number, because both x and y are fixed.

We assume our approximations have the following three properties.

(D g(e,y) is a strictly convex quadratic for all y,
(2) g(yy) = f(y) forall y,
3) g (v,y) = f'(y) forall y.

Thus g(e,y) is a quadratic that coincides with f in y and has the same tan-
gent as f in y. It follows that

, 1
@) g(6.y) = f0) + /') (x=y) +5alx—y)*
for some a > 0. It also follows that, if a # 0,
"o

a

(5) yi=y—

1.1. Newton. The most familiar example of an algorithm of this form is
Newton’s method, which requires in addition to (1)), (2)), and (3)) that

(6) " ny)=1").

This means a = f”(y) and thus g(e,y) is uniquely defined. Of course
Newton’s method, in its unmodified form, can only be applied for twice-
differentiable functions at locations where f”(y) > 0. If we want it to work
more generally, we need to modify (6). Another major problem with () is
that the approximation is strictly local and may be very poor if we move
away from y. That is another reason why we need to add various safeguards

in actual implementations of Newton’s method.

1.2. Quadratic Majorization. A second example of our algorithm scheme
is quadratic majorization, where we require, in addition to (I)), (2)) and (3))
that

(7 g(x,y) > f(x) for all x.
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If f is twice-differentiable case (7)) implies a = g”(y|y) > f”(y) [De Leeuw
and Lange| [2009]]. But (7)) 1s actually much stronger, because it is a global
condition, in the sense that it restricts the approximation g for all x. Using
a global approximation condition on the one hand is good, because it regu-
larizes the approximations, and forces convergence. On the other hand it is
bad, because it constrains the approximation in areas which are not really

relevant for the computations, which results in a slow rate of convergence.

If we define
® a0 F0) - ) ) gale—y)
then (7)) requires & (x,y,a) < 0 for all x. Define

8(y.a) 2 sup8(x.y,a).

and suppose .27 (y) is the set of all @ > 0 such that §(y,a) < 0. If a € &/ (y)
and @’ > a, then d’ € <7 (y). Thus if <7 (y) is non-empty, there is an @(y) such
that either <7 (y) = [a(y),+) or <7 (y) = (a@(y),+o0). The set <7 (y)may
be empty, because there may not exist any quadratic majorizations. If f
is cubic, for instance, quadratic majorizations do not exist for any y [De
Leeuw and Lange, |2009].

The number a(y), which is the greatest lower bound of <7 (y), defines the
sharpest quadratic majorization [Van Ruitenburg, 2005; De Leeuw and
Lange, 2009]. Observe that under our conditions the sharpest quadratic

majorization could be linear.

2. IMPROVEMENTS

Newton’s method has fast local convergence, while the majorization method
has slow global convergence. There has been quite a lot of work modifying
the majorization method to give it faster local convergence, while main-
taining the global convergence. Updates using cubic and quartic approxi-
mations are discussed in De Leeuw| [2006]]. Updates that do not minimize

g(e,y) but merely decrease it in other systematic ways have been discussed
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in many places. In this paper, however, we continue to impose (1)), (2))
and (3)), but we relax (7).

The proof of global convergence of the majorization method (i.e. con-
vergence from any initial point) uses the sandwich inequality [De Leeuw,
1994]]. We introduce the additional convention that we stop the algorithm if

g(e,y) is minimized at x =y, i.e. if y© = y. Thus if we do not stop

9) FOT) <gb™,y) <glny) = f),

and we decrease the value of f.

The sandwich inequality (9) continues to apply under weaker conditions
than (7). Three possible alternatives are

(10a) flx (x,y) for all x such that g(x,y) < g(y,y),
f

)<g
(10b) x)<f

X
(v) for all x such that g(x,y) < g(,y),
(10c) fOH < ).

Define .Z(y) to be the level set {x | g(x,y) < g(y,y)}. Then (I0a) says that
g(e,y) majorizes f on the level set £ (y), while (I0b)) says that f attains its
maximum on the level set .Z(y) at y. Condition merely says that the
update y™* that minimizes the quadratic majorizer g(e,y) is at least as good
asy.

Under all three conditions it follows that f(y™) < f(y), i.e. we have mono-
tone convergence. Each of the conditions (10) defines a set <7 (y) of a such
that g defined by (@) satisfies the condition. Thus each of the conditions can
be used to define a notion of sharp quadratic majorization, which chooses a
to be the glb of <7

For ease of reference, the three conditions are referred to, respectively, as
L-majorization, M-majorization, and U-majorization, where the L stand for
level, the M stand for maximum, and the U stands for update. In this paper

we shall limit ourselves to studying L.-majorization.
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3. CUBICS

3.1. Majorization. As we mentioned before, there is no quadratic ma-

jorization for (non-trivial) cubics. For a cubic we have

f@)=fO)+f()x—y)+ %f"(y)(x—y)2 + éf”’(y)(x—y)3,

with f”'(y) # 0. Thus we must have

(1) f(x) —glxy) =
1 1
=5 (") =)=y + ") (x-y)’ <0,
for all x, which is impossible. We can always make f(x) — g(x,y) arbitrarily

large by letting either x — +o0 or x — —oo.

3.2. L-majorization. If g(x,y) has the form (d), then the level set £ is a
closed interval with endpoints y and y — 2 f’(y) /a. For each x in this interval
we must have (TT]), or
1 1
(x —y)z[i(f"(y) —a)+ o f"()(x=y)] <0.
Since the linear term in square brackets takes its extreme values at the end-
points of the interval, we must have both a > f”(y) and

1 1
S0) —a) - §f”’(y>f’(y)/a <0,
which we can rewrite as
2
(12) a*—af”(y)+ 30 ) =0.

If the quadratic equation corresponding to (I2) has no real roots or one
real root, then the inequality (12) is satisfied for all @, and thus a(y) =
max(f”(y),0). If f”(y) > 0 the sharp quadratic local majorization step is a
Newton step.

If the equation has two real roots, they are written as p(y) < ¢(y). We
have p(y) +q(y) = f”(y). Thus if p(y) and g(y) are non-negative, then
0<p<g<f"(y),and consequently a(y) = f""(y) >0.If p<0Oand g >0
then ¢ = f"(y) — p > f”(y) and thus a(y) = ¢. If both p <0 and ¢ <0
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then f”(y) < p < ¢ <0, and thus @(y) = 0 and the best local majorization

18 linear.

Near a local minimum, where f”(y) > 0 and f/(y) is close to zero, the two
roots of the quadratic are approximately g = f”(y) — % f'(y)and p= % ).

3.3. Example. Our numerical example is f(x) = x> —2x+ 1. The function
and its first three derivatives at various points y are given in Table [T, We
also give the two roots of the quadratic (??), and the bounds a(y).

TABLE 1. Cubic Function

y -2.000 -1.000 -0.500 0.000 0.500 1.000 2.000
f -3.000 2.000 1.875 1.000 0.125 0.000 5.000
f 10.000 1.000 -1.250 -2.000 -1.250 1.000 10.000
f” | -12.000 -6.000 -3.000 0.000 3.000 6.000 12.000

ik 6.000 6.000 6.000 6.000 6.000 6.000 6.000
r(y) — -5.236 -4.193 -2.828 -1.193 0.764 -
q(y) - -0.764 1.193 2.828 4.193 5.236 -

a(y) 0.000 0.000 1.193 2.828 4.193 6.000 12.000

We show two actual “majorizations” satisfying (10a)) in Figure[I] The cubic
is in red, the quadratic majorizer in blue, and the interval .# (y,a) in green.
Thus, throughout the green interval, the red function must be below the blue

function.

4. QUARTICS
For a quartic f”(y) is independent of y. For non-trivial quartics f%(y) # 0.

4.1. Majorization. We know that cubics can never be globally majorized
by quadratics. We show now that only some quartics can be globally ma-

jorized.
(13) f(x)—g(x,y) =

= (PG 0) @)+ 0N+ 5 ) -3,
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Thus for x # y the sign of f(x) — g(x,y) is the sign of the quadratic A(e,y)
defined by

A
(14) h(x,y)=
1(f//( ) 1 1/ 1 iv 2
S0 —a)+ 7=y + 5 () (x—)"
For majorization we require that /(e,y) is less than or equal to zero every-
where. This is only possible if %(y) < 0. We then have majorization if and
only if the discriminant of 4(e,y) is non-positive, i.e. if and only if
Vo Loy iv
— - — <
3 O () —a) M) <0

or

L))

fPO)
Thus sharp global quadratic majorizers exist if and only if majorizers exist
if and only if f(y) < 0. Define @g(y) to be the right hand-side of (T3] If

we use sharp global quadratic majorization, then the rate of convergence of

(15) a> f"(y)—

the majorization method to a local minimum is

- 3(£"(y))?
Aly) = 3(f"3)? = ") f(y)

4.2. L-Majorization. We assume first that fiv(y) > 0. Because h(e,y) is
a convex quadratic f(x) — g(x,y) <O for all x in an interval if and only if
h(x,y) < 0 at both endpoints of the interval. This means that we must have
a> f"(y) and
1 1 1 .

@ —a S f" () +a O 0) = 57 )0 () = 0.
If the corresponding cubic has only one real root p(y), thena(y) = max(0, ' (y), p(y)).
If there are three real roots p1(y) < pa2(y) < p3(y) then define

(pi(y) if —eo < () < p1(y),
i) = ') if pr(y) < () < pa(y),

p3(y)  if pa(y) < () < p3(y),

()i pa(y) S () < e
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Then the sharp local bound is @; (y) = max(0,d(y)).

If f7(y) < 0 matters are more complicated. Observe that in this case f is
unbounded below. We define sharp local bound @, (y) for this case. Also
observe there is a sharp global quadratic majorization. Clearly the ag(y) <
a; (y). Since it is still necessary that i(x,y) < 0 at the endpoints of the

interval we also have @; (y) <aj (y).

Now h(e,y) is a concave quadratic. If it is maximized at a location outside

the interval, then @; (y) = a; (y).

5. LoGIT

6. PROBIT

TABLE 2. Iterations

Iteration | Newton | A B
0 5 5 )
1 916667 | .75 7981456
2 8219697 | .8125 .8164283
3 8165148 | .8164804 | .8164966
4 .8164966 | .8164966
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FIGURE 1. First Condition, Majorizations
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