
MINIMIZING THE CARTESIAN FOLIUM

JAN DE LEEUW

Abstract. In this short note we use the Cartesian Folium to

illustrate the behaviour of several general purpose minimiza-

tion algorithms.

1. Introduction

The “folium cartesii” (letter of Descartes to Mersenne, August 23,

1638) is the function f : R2 → R defined by

f(x,y) = x3 +y3 − 3xy.

The gradient is

g(x,y) =
3x2 − 3y

3y2 − 3x

 ,
and the Hessian is

H(x,y) =
6x −3

−3 6y

 .
It follows that f(x,y) has a saddle point at (0,0) and an isolated

local minimum at (1,1). These are the only two stationary points.

At (0,0) the eigenvalues of the Hessian are +3 and −3, at (1,1)
they are 9 and 3.

The Hessian is singular if and only if (x,y) is on the hyperbola

xy = 1
4 . It is positive definite if and only if (x,y) is above the

branch of the hyperbola in the positive orthant.
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See Figure 1 for contour plots of sections of f on two different

scales.

Insert Figure 1 about here

Also, see Figure 2 for the folium with the bowl around (1,1) in the

foreground.

Insert Figure 2 about here

2. Newton

In Newton’s method we make a quadratic approximation at the

current point (x0, y0), and then minimize this quadratic approxi-

mation to find the new point. The quadratic approximation is

f(x,y) ≈ f(x0, y0)+g(x0, y0)′(x−x0)+
1
2
(x−x0)′H(x0, y0)(x−x0).

If H(x0, y0) is not positive semi-definite, then there is no mini-

mum, and the Newton step is not defined. If H(x0, y0) D 0 but

singular, then the quadratic approximation has a minimum if and

only if g(x0, y0 is orthogonal the unique vector in the null space of

H(x0, y0). Some algebra shows that this cannot happen if x0, y0) is

in the non-negative orthant, and thus the quadratic approximation

has a minimum if and only if H(x0, y0) B 0.

For H(x,y) positive definite Newton’s method uses the algorith-

mic map

FN(x,y) =
x
y

−H−1(x,y)g(x,y).

By this we mean that in Newton’s method we replace (x(k), y(k))
from iteration k by (x(k+1), y(k+1)) = F(x(k), y(k)). If H(x,y) is

not positive definite, then the Newton step is not defined. Making

a step only if the Hessian is positive definite is the supervised New-

ton’s method. There are other ways to supervise Newton’s method,

which make it possible to step every time. We will, however, alter-

natively define unsupervised Newton’s method by the algorithmic
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map FN , where apply FN wheneverH(x,y) is non-singular (or even,

using the Moore-Penrose inverse, when H(x,y) is singular). After

some algebra the algorithmic map works out as

FN(x,y) =
 2x2y+y2

4xy−1
2xy2+x2

4xy−1 .


The unsupervised Newton’s method converges quadratically, ei-

ther to the saddle point at (0,0) or to the local minimum at (1,1),
depending on which side of the hyperbola xy = 1

4 we choose the

starting point of the iterations. Figure 3 colors one million pixels, a

pixel is red if Newton’s method converges to (0,0) if started from

that pixel, and it is yellow if it converges to (1,1). We see that the

unsupervised Newton’s method converges to the local minimum if

and only if the Hessian at the starting point is positive definite.

Insert Figure 3 about here

In Figure 4(a) we have colored the pixels (x,y) for which FN(x,y)
is in the positive quadrant. This is the region above the hyperbola

xy = 1
4 . The other plots in Figure 4 make similar plots for the

other three quadrants. In each case, one million pixels are colored.

They are red if the update of that pixel is in the relevant quadrant.

Insert Figure 4 about here

F(x,y) ∼ −
y2

x2



3. Coordinate Descent

The dynamics of Newton’s method are quite complicated. A sim-

pler, but generally slower, algorithm is considered next. In coordi-

nate descent an iteration consists of two parts. We first optimize f
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over x, while keeping y fixed at its current value, and then we opti-

mize over y , with x fixed at the new value we have just computed

in the new part.

The minimum over x for fixed y only exists if y > 0, in which case

it is attained at
√y . In the same way, the minimum over y for fixed

x > 0 is attained at
√
x. Thus the algorithm is simply

x(k+1) =
√
y(k),

y(k+1) =
√
x(k+1),

and the algorithmic map is

F(x,y) =
√y

4
√y

 .
The algorithm can only work if we start with y(0) > 0. It then con-

verges, linearly and monotonically, to (1,1) with convergence rate
1
4 . The supervised algorithm cannot converge to (0,0). If we de-

fined, analogously with Newton’s method, an unsupervised version

that applies the algorithmic map for all y ≥ 0, then we can indeed

have convergence (in a single step) to (0,0).

4. Quadratic Majorization

As in Newton’s method, quadratic majorization methods we make

a quadratic approximation at the current point (x0, y0), and then

minimize this quadratic approximation to find the new point. But

we now choose the quadratic approximation in such a way that it is

always above the function we are minimizing, while it touches the

function in the current point. Thus we want Q(x0, y0) such that

f(x,y) ≤ f(x0, y0)+g(x0, y0)′(x−x0)+
1
2
(x−x0)′Q(x0, y0)(x−x0).

Unfortunately for cubics, such as the Folium, quadratic majorizers

do not exist. We use a hack, and minimize the folium on a bounded

rectangle.
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If we minimize f(x,y) on the rectangle defined by 0 ≤ x ≤ K and

0 ≤ y ≤ K then we can apply quadratic majorization.

x3 ≤ x3
0 + 3x2

0(x − x0)+ 3K(x − x0)2,

y3 ≤ y3
0 + 3y2

0(y −y0)+ 3K(y −y0)2,

and thus the algorithmic map is

F(x,y) = 1
2K

−x2 + 2Kx +y
−y2 + 2Ky + x

 .
The linear convergence rate is 1− 1

2K
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Appendix A. code

inequals<−function ( x , y , f l i s t )

{

u<−matrix (1 , length ( x ) , length ( y ) )

for ( k in 1 : length ( f l i s t ) )

5 u<−u* i fe lse ( outer ( x , y , function ( x , y ) f l i s t [ [ k ] ] ( x , y

) ) >0 ,1 ,0)

image ( x , y , u , zlim=c ( . 5 , 1 ) , col="RED" )

}

attractor<−function ( x , y ) {

10 z<−matrix (0 , length ( x ) , length ( y ) )

for ( i in 1 : length ( x ) ) {

for ( j in 1 : length ( y ) ) {

d<−newtfol ( x [ i ] , y [ j ] )

i f ( sqrt (sum(d^2) )<1e−3) z [ i , j ]

<−−1

15 i f ( sqrt (sum ( ( d−c (1 ,1 ) ) ^2) )<1e−3)

z [ i , j ]<−1

}

}

image ( x , y , z , col=heat . colors ( 3 ) )

}

20

newtfol<−function ( x , y ) {

xold<−g1 ( x , y ) ; yold<−g2 ( x , y )

repeat {

xnew<−g1 ( xold , yold ) ; ynew<−g2 ( xold , yold )

25 i f ( sqrt ( (sum ( ( xold−xnew) ^2) ) ) < 1e−6)

break

xold<−xnew ; yold<−ynew

}

return ( c (xnew,ynew) )
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}

30

pdf ( " inequals . pdf " )

x<−seq(−3 ,3 , length=1000)

y<−seq(−3 ,3 , length=1000)

35

f1<−function ( x , y ) 4 *x*y−1

f2<−function ( x , y ) 2 *y*x^2+y^2

f3<−function ( x , y ) 2 *x*y^2+x^2

40

g1<−function ( x , y ) f2 ( x , y ) /f1 ( x , y )

g2<−function ( x , y ) f3 ( x , y ) /f1 ( x , y )

g3<−function ( x , y ) −g1 ( x , y )

g4<−function ( x , y ) −g2 ( x , y )

45 inequals ( x , y , l i s t ( g1 , g2 ) )

inequals ( x , y , l i s t ( g1 , g4 ) )

inequals ( x , y , l i s t ( g3 , g2 ) )

inequals ( x , y , l i s t ( g3 , g4 ) )

50 attractor ( x , y )

dev . off ( )
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Figure 1. Contour Plots for the Folium
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Figure 2. The Folium
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Figure 3. Points of Attraction for Newton’s Method
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(d) x < 0 and y < 0

Figure 4. Sign of Newton Iterates
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