
MAJORIZATION METHODS FOR LOGISTIC REGRESSION

JAN DE LEEUW

1. Introduction

The majorization method [De Leeuw, 1994; Heiser, 1995; Lange

et al., 2000; Ahn et al., 2006] for minimization of real valued loss

functions has become very popular in statistics and computer sci-

ence (under a wide variety of names). We give a brief introduction.

Suppose the problem is to minimize a real valued function φ(•)
over Θ ⊆ Rp,

We say that a real valued function ψ(•) majorizes φ(•) over Θ in

ξ ∈ Θ if

φ(θ) ≤ ψ(θ) ∀θ ∈ Θ,(1a)

φ(ξ) = ψ(ξ).(1b)

In words, ψ(•) must be above φ(•) in all of Θ, and touches φ(•)
in ξ. We say that ψ(•) strictly majorizes φ(•) over Θ in ξ ∈ Θ if we

have (1a) and

(2) φ(θ) = ψ(θ) if and only if θ = ξ.

In words, ψ(•) must be above φ(•) in all of Θ, and touches φ(•)
only in ξ.

Now suppose that we have a function ψ(•,•) on Θ ⊗Θ such that

φ(θ) ≤ ψ(θ.ξ) ∀θ, ξ ∈ Θ,(3a)

φ(ξ) = ψ(ξ, ξ) ∀ξ ∈ Θ.(3b)
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Thus for all ξ ∈ Θ the function ψ(•, ξ) majorizes φ(•) over Θ
in ξ. In this case we simply say that ψ(•,•) majorizes ψ(•) overΘ. Also, ψ(•,•) strictly majorizes ψ(•) over Θ if for all ξ ∈ Θ
the function ψ(•, ξ) strictly majorizes φ(•) over Θ in ξ. Jacobson

and Fessler [2004] call the function ψ(•,•) a majorant generator.

From the computational point of view the trick is to find a majorant

generator which is relatively simple to minimize over θ for each ξ.

Each majorization function can be used to define an algorithm.

In each step of such a majorization algorithm we find the update

θ(k+1) by minimizing ψ(•, θ(k)) over Θ, i.e. we choose

θ(k+1) ∈ Argmin
θ∈Θ ψ(θ,θ(k)).

The minimum of ψ(•, θ(k)) over Θ may not be unique, and conse-

quently Argmin(•) is a set-valued map. If the minimum is unique,

we use the single-valued version and set

θ(k+1) = argmin
θ∈Θ ψ(θ,θ(k)).

The algorithm includes a simple stopping rule. If

θ(k) ∈ Argmin
θ∈Θ ψ(θ,θ(k))

then we stop. If we never stop, then we obviously generate an

infinite sequence.

Now suppose the algorithm generates an infinite sequence. For

each step of the algorithm the sandwich inequality

(4) φ(θ(k+1)) ≤ ψ(θ(k+1), θ(k)) < ψ(θ(k), θ(k)) = φ(θ(k))

shows that an iteration decreases the value of the loss function [De

Leeuw, 1994]. The strict inequality ψ(θ(k+1), θ(k)) < ψ(θ(k), θ(k))
follows from the fact that we do not stop, which implies that θ(k)

is not a minimizer of ψ(•, θ(k)). This is used to prove convergence

of the algorithm, using general results such as those of Zangwill

[1969].
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2. Linear Logistic Regression

2.1. Loss Function. In logistic regression we minimize a negative

log-likelihood function of the form

(5) φ(θ) = −
n∑
i=1

{
yi logF(x′iθ)+ (1−yi) log(1− F(x′iθ))

}
,

where

(6) F(x) = 1
1+ exp(−x)

is the cumulative logistic distribution function. The yi are our

binary data, and the xi are vectors with the values of p predictors.

In many practical applications, such as bio-assay or psychophysics,

the number of different values of the predictors xi may be much

smaller than n. In other words, we have a design in which the

values of the regressors are replicated. In this case we usually

write

(7) φ(θ) = −
m∑
j=1

{
nj logF(x′jθ)+ (Nj −nj) log(1− F(x′jθ))

}
,

Here nj is the number of positive outcomes for treatment xj , and

Nj is the total number of times treatment xj is offered.

We will continue to work with (5), because it is somewhat more

convenient. If we define zi = (1 − 2yi)xi, for example, then the

log-likelihood can be written in the more compact form

φ(θ) = −
n∑
i=1

logF(z′iθ) =
n∑
i=1

log(1+ exp(−z′iθ)),

2.2. Boundedness and Convexity. Because 0 < F(x) < 1 for all x,

it follows directly that φ(θ) > 0 for all θ. Thus the negative log-

likelihood is bounded below by zero. Since it is continuous (in fact,

infinitely many times differentiable) this implies that φ̂ = infθφ(θ)
is finite and non-negative. Observe that φ̂ ≤ φ(0) = n log 2, with
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equality if and only if Z is centered, i.e. the columns of Z add up

to zero.

We see, from Appendix C,

Dφ(θ) = −Z′g(θ),

where g(θ) has elements 1− F(z′iθ), and

D2φ(θ) = Z′H(θ)Z,

where H(θ) is diagonal, with elements F(z′iθ)(1− F(z′iθ)).

The diagonal elements of H(θ) satisfy 0 < hii(θ) ≤ 1
4 . Thus H(θ),

and consequently D2φ(θ) is positive semi-definite for all θ, and

φ(θ) is convex. Each local minimum is a global minimum, and

the set of θ where the minimum is attained is a compact convex

set (which may be empty). Moreover rank(D2φ(θ)) = rank(Z),
so if we parametrize our problem such that Z is of full column-

rank p we see that D2φ(θ) is positive definite and the negative

log-likelihood is strictly convex. If the minimum is attained, it is

attained at a unique point.

2.3. Existence. We still have to investigate if the minimum is in-

deed attained, i.e. if maximum likelihood estimates exist or if there

is a θ̂ such that φ̂ = φ(θ̂). For logistic regression the existence

problem was first studied systematically by Albert and Anderson

[1984], with improvements by Sandler and Duffy [1986]. For gen-

eral discrete exponential families results were given by Jacobsen

[1989]. We give a slightly different treatment, using general tools

from convex analysis. Also compare Kaufmann [1988]. If maxi-

mum likelihood estimates do not exist, we can still compute ex-

tended maximum likelihood estimates [Haberman, 1974, Appendix

B], in which some or all of the components of θ are equal to ±∞.

Computational aspects of extended maximum likelihood estima-

tion are discussed in Clarkson and Jennrich [1991].
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It is useful to first discuss the case φ̂ = 0. This happens if and

only if the system of linear inequalities Zθ > 0 has a solution, i.e.

we can choose θ such that x′iθ < 0 for all i such that yi = 1 and

x′iθ > 0 for all i such that yi = 0. If θ is such that Zθ > 0 we can

simply use limλ→∞φ(λθ) = 0. Geometrically Zθ > 0 means there

is a hyperplane strictly separating the two sets of points X1 and

X0 in Rp, with X1 corresponding with the xi for which yi = 1 and

X0 with the xi for which yi = 0. In the terminology of Albert and

Anderson [1984] this means we have complete separation.

Now consider the case where the minimum is attained at some θ.

To study this we use the asymptotic function (also known as the

recession function), defined by

φ′∞(d) = sup
τ>0

φ(x + τd)−φ(x)
τ

= lim
τ→∞

φ(x + τd)−φ(x)
τ

.

Observe that, as the notation suggest, the value of the recession

function only depends on the direction d, and not on x [Hiriart-

Urruty and Lemaréchal, 1993, p. 178–183]. The general result we

need is that φ′∞(d) > 0 for all d 6= 0 is necessary and sufficient

for φ(•) to have a nonempty (and thus compact and convex) set of

minimum points.

Define φi(θ) = − logF(z′iθ) = log(1 + exp(−z′iθ)). By simple cal-

culation

(φi)′∞(d) =

1 if z′id < 0,

0 if z′id ≥ 0.

It follows that φ′∞(d) =
∑n
i=1(φi)′∞(d) is the number of i for which

z′id < 0. We conclude that the minimum exists if and only if for all

d 6= 0 there is at least one i such that z′id < 0. Or, in other words, if

and only if the homogeneous system of linear inequalities Zθ ≥ 0

only has the trivial solution θ = 0.

Maximum likelihood estimates do not exist if and only if Zθ ≥ 0

has a non-trivial solution θ. In this last case we have complete sepa-

ration if there is a θ such that Zθ > 0. We have partial separation if
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there is no complete separation, but there is a solution θ in which

some of the components of Zθ are positive and some are zero.

2.4. Systems of Linear Inequalities. It follows from these consid-

erations that optimizing the logistic regression loss function can

be used to compute solutions to systems of linear inequalities.

This is closely related to a proposal by Motzkin [1952], taken up

later by Stewart [1987], to solve Zθ ≥ 0 by minimizing

(8) φMS(θ) =
n∑
i=1

exp(−z′iθ).

See also Borwein and Lewis [2000, p. 23–27]. Similar to the neg-

ative log-likelihood φ(•) the function φMS(•) is convex and has a

minimum if and only if the system Zθ ≥ 0 does not have a non-

trivial solution. Stewart suggests using Newton’s method with line

search to minimize (8), and studies its properties.

In a related development Chen and Mangasarian [1996] solve the

system Zθ ≤ 0 by minimizing

(9) φCM(θ, τ) =
n∑
i=1

p(z′iθ, τ),

where

p(x, τ) = x + 1
τ

log(1+ exp(−τx)).

The function p(x, τ) is a smoothed (infinitely differentiable, strictly

convex, and strictly increasing) version of (x)+ =max(x,0). In fact

p(x, τ) > (x)+ for all x, and limτ→∞p(x, τ) = (x)+. The relation-

ship with the negative logistic log-likelihood is

φ(θ) = φCM(θ,1)− r ′θ,

where

r =
n∑
i=1

yizi.
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2.5. Newton’s Method. The standard algorithm for linear logistic

maximum likelihood is Newton’s method. We discuss it briefly for

reference purposes. Newton’s method takes the simple form

θ(k+1) = θ(k) − (Z′H(θ(k))Z)−1Z′g(θ(k)).

Applying the Newton algorithm without safeguards usually leads

to problems. If the quadratic approximation is poor, the algorithm

may make steps which are too large and this can lead to non-

convergence. We also have to take into account that the minimum

may not exist, and thus the iterates cannot possibly converge.

3. Quadratic Majorization

3.1. Uniform Quadratic Majorization. By the mean value theorem

φ(θ) ≤ φ(θ(k))− (θ − θ(k))′Z′g(θ(k))+

+ 1
2

sup
0≤λ≤1

(θ − θ(k))′Z′H(λθ + (1− λ)θ(k))Z(θ − θ(k)),

and since

H(λθ + (1− λ)θ(k)) ≤ 1
4
I,

we have

φ(θ) ≤ φ(θ(k))− (θ − θ(k))′Z′g(θ(k))+

+ 1
8
(θ − θ(k))′Z′Z(θ − θ(k)).

The corresponding majorization algorithm is

(10) θ(k+1) = θ(k) + 4(Z′Z)−1Z′g(θ(k)).

Alternatively, we can use any matrix norm ‖Z′Z‖ to derive the sim-

pler algorithm

(11) θ(k+1) = θ(k) + 4
‖Z′Z‖Z

′g(θ(k)).

The obvious choice in (11) is to use the spectral norm, i.e. the

largest eigenvalue of Z′Z .
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3.2. Relaxation. For the sandwich inequality to apply it is not nec-

essary to actually minimize the majorization function. It suffices

to decrease it. In fact, let F(•) be a mapping of Θ into Θ such that

ψ(F(θ(k)), θ(k)) ≤ ψ(θ(k), θ(k))).

Then the sandwich inequality still applies, and under strict ma-

jorization we still have φ(θ(k+1)) < φ(θ(k)) if we set θ(k+1) =
F(θ(k)).

In our quadratic majorization example we can consider the algo-

rithm

θ(k+1) = θ(k) −K(π(2+ θ(k))−π(1− θ(k))).

Now

ψ(θ(k+1), θ(k)) = φ(θ(k))+ (1
4
K2 −K)(π(2+ θ(k))−π(1− θ(k)))2,

and thus ψ(θ(k+1), θ(k)) ≤ φ(θ(k)) for 0 ≤ K ≤ 4.

The case K = 0 is uninteresting, because any point is a fixed point

and nothing changes. The case K = 4 is of some interest, however.

We move to a point equally far from the minimum as the current

solution, or majorization point, but on the other side of the min-

imum. This is sometimes known as over-relaxation. At this over-

relaxed point we have ψ(θ(k+1), θ(k)) = φ(θ(k)), but in the case of

strict relaxation this still gives φ(θ(k+1)) < φ(θ(k)).

The linear convergence rate of the algorithm with step-size K is

|1−Kφ′′(−.5))| ≈ |1− 0.2982929K|

Thus for K = 4 we obtain a rate of 0.1931716 and convergence

which is about twice as fast as before (see the “overrel” column in

Table ??). The first two iterations of the over-relaxed algorithm are

in Figure ??.

[Figure 1 about here.]
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For the very special choice

K = 1
2+ σ(1.5) ≈ 3.352410

we have superlinear convergence (but of course we can only use

this step-size if we already know the solution). See the “optrel”

column in Table ??.

3.3. Sharp Quadratic Majorization.

4. Cubic Majorization

So far our majorization methods have linear convergence (unless

we are very lucky). It is quite straightforward, however, to con-

struct majorization methods with superlinear convergence.

Define

µ(θ) = σ ′(θ) = π ′′(θ) = π(θ)(1−π(θ))(1− 2π(θ)).

Some simple computation gives

− 1
18

√
3 ≤ µ(θ) ≤ + 1

18

√
3.

This means that

1
9

√
3 ≤ φ′′′(θ) = µ(2+ θ)− µ(1− θ) ≤ 1

9

√
3,

and thus

ψ(θ, ξ) = φ(ξ)+ (π(2+ ξ)−π(1− ξ))(θ − ξ)+

+ 1
2
(σ(1− ξ)+ σ(2+ ξ))(θ − ξ)2 +

√
3

54
|θ − ξ|3

is a majorization of φ(•). The majorization function seems some-

what non-standard, because it involves the absolute value of the
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cubic term. Nevertheless it is two times continuously differen-

tiable. In fact, it is also strictly convex, because the second de-

rivative is

D11ψ(θ, ξ) =

(σ(1− ξ)+ σ(2+ ξ))+
√

3
9 (θ − ξ) for θ ≥ ξ,

(σ(1− ξ)+ σ(2+ ξ))−
√

3
9 (θ − ξ) for θ ≤ ξ.

which is clearly positive.

To find the minimum we set the first derivative equal to zero. The

first derivative at ξ is equal to π(2+ξ)−π(1−ξ). If this is positive

then the minimum is attained at a value smaller than ξ. In this case

the quadratic

π(2+ ξ)−π(1− ξ)+ (σ(1− ξ)+ σ(2+ ξ))ζ −
√

3
18
ζ2 = 0

has two real roots ζ1 < 0 < ζ2 and the minimum we look for is

attained at ξ + ζ1. If the derivative at zero π(2 + ξ) − π(1 − ξ) is

negative, then

(π(2+ ξ)−π(1− ξ))+ (σ(1− ξ)+ σ(2+ ξ))ζ +
√

3
18
ζ2 = 0

again has two real roots ζ1 < 0 < ζ2 and the minimum of the

majorization function is attained at ξ + ζ2.

For the derivative of the algorithmic map ξ + ζ(ξ) we find

1− φ
′′(ξ)+ ζ(ξ)φ′′′(ξ)
φ′′(ξ)+ ζ(ξ) 1

18

√
3
.

At a fixed point ζ(ξ) = 0 and thus the derivative is zero, which

implies superlinear convergence.

5. Quartic Majorization

Define

λ(θ) = π ′′′(θ) = π(θ)(1−π(θ))(1− 6π(θ)+ 6π2(θ)).

We find that

− 1
24
≤ λ(θ) ≤ 1

8
.
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Thus

φ′′′′(θ) = λ(2+ θ)+ λ(1− θ) ≤ 1
4
.

The majorization function is

ψ(θ, ξ) = φ(ξ)+ (π(2+ ξ)−π(1− ξ))(θ − ξ)+

+ 1
2
(σ(1−ξ)+σ(2+ξ))(θ−ξ)2+ 1

6
(µ(2+ξ)−µ(1−ξ))(θ−ξ)3+

+ 1
96
(θ − ξ)4.

The second partials are

D11ψ(θ, ξ) = (σ(1− ξ)+ σ(2+ ξ))+

(µ(2+ ξ)− µ(1− ξ))(θ − ξ)+ 1
8
(θ − ξ)2.

This quadratic has no real roots (conjecture so far), and since it

is positive for θ = ξ the quartic majorization function is strictly

convex.

Setting the derivative equal to zero means solving a cubic with only

one real root. This root gives the minimum of the majorization

function.

Appendix A. Numerical Examples

Consider the data from Maxwell [1961, page 64] in Table C. They

indicate the number of boys in a clinic classified as inveterate liars

by the resident psychiatrist. We do a simple logistic regression

on age, which means Z has a column of ones and a column with

the numbers one to five. The maximum likelihood solution for the

intercept is θ0 ≈ −1.1971, while that for the slope is θ1 ≈ 0.2737.

[Table 1 about here.]

[Table 2 about here.]

For completeness, we also study the quite different Cancer Remis-

sion data of Lee [1974], given in Table C. These data have a binary
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outcome (given in the last column), indicating in which of 27 pa-

tients remission occurred. There are six variables (plus the inter-

cept), indicating the results of several medical tests.

Appendix B. Additive Regression Functions

Theorem B.1. For a function of the form

φ(θ) =
n∑
i=1

f(z′iθ)

we have

φ(r)(θ) =
n∑
i=1

f (r)(z′iθ)
r times︷ ︸︸ ︷

zi ⊗ · · · ⊗ zi .

Appendix C. The log-logistic

Theorem C.1. The function f(x) = − logF(x) = log(1+ exp(−x))
is strictly convex.

Proof. Elementary computation gives

f ′(x) = 1− F(x),

f ′′(x) = F(x)(1− F(x)).

Thus the first derivative is strictly decreasing, the second deriva-

tive is positive. This proves strict convexity. �

Theorem C.2. The r-th derivative f (r)(x) is a polynomial in F(x) of

degree r . Consequently for all r there are two finite real numbers

mr < Mr such that mr ≤ f (r)(x) ≤ Mr for all x.

Proof. From the previous theorem we see the result is true for r =
1 and r = 2. Now proceed by induction. If f (r)(x) = Pr (F(x)) for

some polynomial Pr of degree r , then f (r+1)(x) = P ′r (F(x))F(x)(1−
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F(x)), which is indeed a polynomial in F(x) of degree r +1. In ad-

dition

sup
x
f (r)(x) = max

0≤s≤1
Pr (s),

inf
x
f (r)(x) = min

0≤s≤1
Pr (s),

and the quantities on the right-hand side are clearly finite. �

We illustrate Theorem C.2 by computiong some higher derivatives

f (3)(x) = −F(x)(1− F(x))(1− 2F(x)),

f (4)(x) = −F(x)(1− F(x))(1− 6F(x)+ 6F2(x)),

f (5)(x) = −F(x)(1− F(x))(1− 2F(x))(1− 12F(x)+ 12F2(x))

which implies

− 1
18

√
3 ≤ f (3)(x) ≤ + 1

18

√
3,

− 1
24
≤ f (4)(x) ≤ 1

8

[Figure 2 about here.]

We now look more generally at the polynomials Pr . From the proof

of Theorem C.2 we see that for r > 1 we have Pr (0) = Pr (1) = 0.

Because P2(s) = P2(1− s) we see that actually Pr (s) = Pr (1− s) for

all even r and Pr (s) = −Pr (1 − s) for all odd r > 1. This implies

that Pr (1
2) = 0 for all odd r > 1.

In fact we can get further than this and derive an explicit form for

the polynomials. The difference/differential equation we have to

solve is

Pr+1(x) = x(1− x)P ′r (x),

where P1(x) = 1−x. The general solution (Tom Ferguson, personal

communication, 03/06/05) is

Pr (x) =
r∑
j=1

(j − 1)!S(j, r)(1− x)j
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where the S(j, r) are the Stirling numbers of the second kind (the

number of ways of partitioning r elements into j non-empty sub-

sets).

[Table 3 about here.]
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Figure 2. Derivatives of the log-logisticm0.00.0M0.0M

0.0

0.20.2M0.2M

0.2

0.40.4M0.4M

0.4

0.60.6M0.6M

0.6

0.80.8M0.8M

0.8

1.01.0M1.0M

1.0

m-0.25-0.25M-0.25M
-0
.2
5

-0.20-0.20M-0.20M
-0
.2
0

-0.15-0.15M-0.15M
-0
.1
5

-0.10-0.10M-0.10M
-0
.1
0

-0.05-0.05M-0.05M
-0
.0
5

0.000.00M0.00M
0.
00

secondMsecondM

second

sMsM

s

-s*(1-s)M-s*(1-s)M
-s
*(1
-s
)

m0.00.0M0.0M

0.0

0.20.2M0.2M

0.2

0.40.4M0.4M

0.4

0.60.6M0.6M

0.6

0.80.8M0.8M

0.8

1.01.0M1.0M

1.0

m-0.10-0.10M-0.10M

-0
.1
0

-0.05-0.05M-0.05M

-0
.0
5

0.000.00M0.00M

0.
00

0.050.05M0.05M

0.
05

0.100.10M0.10M

0.
10

thirdMthirdM

third

sMsM

s

-s*(1-s)*(1-2*s)M-s*(1-s)*(1-2*s)M

-s
*(1
-s
)*(
1-
2*
s)

m0.00.0M0.0M

0.0

0.20.2M0.2M

0.2

0.40.4M0.4M

0.4

0.60.6M0.6M

0.6

0.80.8M0.8M

0.8

1.01.0M1.0M

1.0

m0.000.00M0.00M
0.
00

0.050.05M0.05M
0.
05

0.100.10M0.10M
0.
10

fourthMfourthM

fourth

sMsM

s

-s*(1-s)*(1-6*s+6*s^2)M-s*(1-s)*(1-6*s+6*s^2)M
-s
*(1
-s
)*(
1-
6*
s+
6*
s^
2)

m0.00.0M0.0M

0.0

0.20.2M0.2M

0.2

0.40.4M0.4M

0.4

0.60.6M0.6M

0.6

0.80.8M0.8M

0.8

1.01.0M1.0M

1.0

m-0.10-0.10M-0.10M

-0
.1
0

-0.05-0.05M-0.05M

-0
.0
5

0.000.00M0.00M

0.
00

0.050.05M0.05M

0.
05

0.100.10M0.10M

0.
10

fifthMfifthM

fifth

sMsM

s

-s*(1-s)*(1-2*s)*(1-12*s+12*s^2)M-s*(1-s)*(1-2*s)*(1-12*s+12*s^2)M



Figures 19

List of Tables

1 Boys’ Ratings on a Lie Scale 20

2 Cancer Remission Data 21



20 Tables

Table 1. Boys’ Ratings on a Lie Scale

age n N-n N
5-7 6 15 21
8-9 18 31 49
10-11 19 31 50
12-13 27 32 59
14-15 25 19 44
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Table 2. Cancer Remission Data

A B C D E F
1 0.80 0.83 0.66 1.9 1.100 0.996 1
1 0.90 0.36 0.32 1.4 0.740 0.992 1
1 0.80 0.88 0.70 0.8 0.176 0.982 0
1 1.00 0.87 0.87 0.7 1.053 0.986 0
1 0.90 0.75 0.68 1.3 0.519 0.980 1
1 1.00 0.65 0.65 0.6 0.519 0.982 0
1 0.95 0.97 0.92 1.0 1.230 0.992 1
1 0.95 0.87 0.83 1.9 1.354 1.020 0
1 1.00 0.45 0.45 0.8 0.322 0.999 0
1 0.95 0.36 0.34 0.5 0.000 1.038 0
1 0.85 0.39 0.33 0.7 0.279 0.988 0
1 0.70 0.76 0.53 1.2 0.146 0.982 0
1 0.80 0.46 0.37 0.4 0.380 1.006 0
1 0.20 0.39 0.08 0.8 0.114 0.990 0
1 1.00 0.90 0.90 1.1 1.037 0.990 0
1 1.00 0.84 0.84 1.9 2.064 1.020 1
1 0.65 0.42 0.27 0.5 0.114 1.014 0
1 1.00 0.75 0.75 1.0 1.322 1.004 0
1 0.50 0.44 0.22 0.6 0.114 0.990 0
1 1.00 0.63 0.63 1.1 1.072 0.986 1
1 1.00 0.33 0.33 0.4 0.176 1.010 0
1 0.90 0.93 0.84 0.6 1.591 1.020 0
1 1.00 0.58 0.58 1.0 0.531 1.002 1
1 0.95 0.32 0.30 1.6 0.886 0.988 0
1 1.00 0.60 0.60 1.7 0.964 0.990 1
1 1.00 0.69 0.69 0.9 0.398 0.986 1
1 1.00 0.73 0.73 0.7 0.398 0.986 0
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9 8 7 6 5 4 3 2 1
1 0 0 0 0 0 0 0 0 -1
2 0 0 0 0 0 0 0 1 -1
3 0 0 0 0 0 0 -2 3 -1
4 0 0 0 0 0 6 -12 7 -1
5 0 0 0 0 -24 60 -50 15 -1
6 0 0 0 120 -360 390 -180 31 -1
7 0 0 -720 2520 -3360 2100 -602 63 -1
8 0 5040 -20160 31920 -25200 10206 -1932 127 -1
9 -40320 181440 -332640 317520 -166824 46620 -6050 255 -1
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