DOUBLE CENTERING PERTURBATIONS

JAN DE LEEUW

Abstract. Meet the abstract. This is the abstract.

1. Introduction

Suppose A is a square symmetric matrix of order n, with non-negative elements, and spectral decomposition $A=X \Lambda X^{\prime}$. Eigenvalues are nonincreasing along the diagonal. Suppose e_{n} is a vector with all n elements equal to one, and J_{n} is the centering operator $J_{n}=I_{n}-\frac{1}{n} e_{n} e_{n}^{\prime}$. Define $B=J_{n} A J_{n}$. We want to relate the spectral decomposition of $B=Y \Omega Y^{\prime}$ to that of A.

2. Low-rank Perturbation

Write the double centered matrix B as

$$
B=A-e_{n} a^{\prime}-a e_{n}^{\prime}+\alpha e_{n} e_{n}^{\prime},
$$

where $a=n^{-1} A e_{n}$ and $\alpha=n^{-2} e_{n}^{\prime} A e_{n}$. We suppose throughout that $\alpha>0$. Alternatively

$$
B=A+\alpha\left(e_{n}-\frac{a}{\alpha}\right)\left(e_{n}-\frac{a}{\alpha}\right)^{\prime}-\alpha^{-1} a a^{\prime},
$$

showing that B is a rank-two perturbation of A. If we define the $n \times 2$ matrix

$$
H=\left[\begin{array}{ll}
\alpha^{\frac{1}{2}}\left(e_{n}-\frac{a}{\alpha}\right) & \alpha^{-\frac{1}{2}} a
\end{array}\right]
$$

and the 2×2 diagonal matrix

$$
D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

then $B=A-H D H^{\prime}$.
2000 Mathematics Subject Classification. 00A00.
Key words and phrases. Binomials, Normals, ETEX.

We now use the Schur determinant theorem (see, for example, De Leeuw (1986]) twice on the matrix

$$
\left[\begin{array}{cc}
A-\mu I & H \\
H^{\prime} & D
\end{array}\right]
$$

If $A-\mu I$ is non-singular, then

$$
\operatorname{det}(B-\mu I)=-\operatorname{det}(A-\lambda I) \operatorname{det}\left(D-H^{\prime}(A-\mu I)^{-1} H\right) .
$$

Now remember that $A=K \Lambda K^{\prime}$. Define u as the first column and v as the second column of $K^{\prime} H$. Then

$$
\operatorname{det}\left(D-H^{\prime}(A-\mu I)^{-1} H\right)=\operatorname{det}\left[\begin{array}{cc}
-1-\sum_{i=1}^{n} \frac{u_{i}^{2}}{\lambda_{i}-\mu} & -\sum_{i=1}^{n} \frac{u_{i} v_{i}}{\lambda_{i}-\mu} \\
-\sum_{i=1}^{n} \frac{u_{i} v_{i}}{\lambda_{i}-\mu} & 1-\sum_{i=1}^{n} \frac{v_{i}^{2}}{\lambda_{i}-\mu}
\end{array}\right]
$$

which means we must solve

$$
G(\mu) \triangleq\left(1+\sum_{i=1}^{n} \frac{u_{i}^{2}}{\lambda_{i}-\mu}\right)\left(1-\sum_{i=1}^{n} \frac{v_{i}^{2}}{\lambda_{i}-\mu}\right)+\left(\sum_{i=1}^{n} \frac{u_{i} v_{i}}{\lambda_{i}-\mu}\right)^{2}=0
$$

or, perhaps more conveniently,

$$
F(\mu) \triangleq \frac{\Delta\left(1+\sum_{i=1}^{n} \frac{u_{i}^{2}}{\lambda_{i}-\mu}\right)\left(1-\sum_{i=1}^{n} \frac{v_{i}^{2}}{\lambda_{i}-\mu}\right)}{\left(\sum_{i=1}^{n} \frac{u_{i} v_{i}}{\lambda_{i}-\mu}\right)^{2}}=-1
$$

Note that if all λ_{i} are different, then

$$
\lim _{\mu \rightarrow \lambda_{i}} F(\mu)=-1
$$

Of course if ω is an eigenvalue of B, unequal to one of the eigenvalues of A, we have $F(\omega)=1$ as well.

3. Interlacing

The centering operator J_{n} is an orthogonal projector of rank $n-1$, and thus there is an orthonormal $n \times(n-1)$ matrix M such that $J_{n}=M M^{\prime}$. It follows that the non-zero eigenvalues of B are the eigenvalues of $M^{\prime} A M$.

4. Expansion

Partition X and Λ, singling out the Perron-Frobenius eigenvector and eigenvalue, as

$$
\begin{aligned}
X & =\left[\begin{array}{ll}
x & \bar{X}
\end{array}\right], \\
\Lambda & =\left[\begin{array}{ll}
\lambda & 0 \\
0 & \bar{\Lambda}
\end{array}\right] .
\end{aligned}
$$

Define $h=n^{-\frac{1}{2}} X^{\prime} e$. Note that $h^{\prime} h=1$, which means we can write h in the form

$$
h=\left[\begin{array}{c}
\sqrt{1-\epsilon^{2}} \\
\epsilon u
\end{array}\right]
$$

for some u with $u^{\prime} u=1$ and some $0 \leq \epsilon \leq 1$. Also define $v=\bar{\Lambda} u$ and $\kappa=u^{\prime} \bar{\Lambda} u$. It follows from the definitions so far that $\alpha=\frac{1}{n}\left(\left(1-\epsilon^{2}\right) \lambda+\right.$ $\epsilon^{2} \kappa$).

If $C=X^{\prime} B X$, then

$$
C=\Lambda-h h^{\prime} \Lambda-\Lambda h h^{\prime}+\left(\left(1-\epsilon^{2}\right) \lambda+\epsilon^{2} \kappa\right) h h^{\prime} .
$$

Of course C has the same eigenvalues as B, and if $C=Z \Omega Z^{\prime}$ then $B=$ $(X Z) \Omega(X Z)^{\prime}$.

We start the comptations by using

$$
h h^{\prime}=\left[\begin{array}{cc}
1-\epsilon^{2} & \epsilon \sqrt{1-\epsilon^{2}} u^{\prime} \\
\epsilon \sqrt{1-\epsilon^{2}} u & \epsilon^{2} u u^{\prime}
\end{array}\right] .
$$

We can then write C as

$$
\left[\begin{array}{cc}
\epsilon^{2} \kappa+\epsilon^{4}(\lambda-\kappa) & -\epsilon \sqrt{1-\epsilon^{2}}\left(v+\epsilon^{2}(\lambda-\kappa) u\right)^{\prime} \\
-\epsilon \sqrt{1-\epsilon^{2}}\left(v+\epsilon^{2}(\lambda-\kappa) u\right) & \Lambda-\epsilon^{2}\left(u v^{\prime}+v u^{\prime}-\lambda u u^{\prime}\right)-\epsilon^{4}(\lambda-\kappa) u u^{\prime}
\end{array}\right]
$$

So far, these results are exact, and they do not depend in any way on ϵ being small.

We can turn the exact result into a convergent power series for C by using $\sqrt{1-\epsilon^{2}}=1-\frac{1}{2} \epsilon^{2}-\frac{1}{8} \epsilon^{4}-\cdots$. This allows us to write

$$
C=C_{0}+\epsilon C_{1}+\epsilon^{2} C_{2}+\cdots
$$

We find

$$
\begin{aligned}
& C_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & \Lambda
\end{array}\right], \\
& C_{1}=\left[\begin{array}{cc}
0 & -v^{\prime} \\
-v & 0
\end{array}\right], \\
& C_{2}=\left[\begin{array}{cc}
\kappa & 0 \\
0 & -\left(u v^{\prime}+v u^{\prime}-\lambda u u^{\prime}\right)
\end{array}\right], \\
& C_{3}=\left[\begin{array}{cc}
0 & \frac{1}{2} v-(\lambda-\kappa) u^{\prime} \\
\frac{1}{2} v-(\lambda-\kappa) u & 0
\end{array}\right], \\
& C_{4}=\left[\begin{array}{cc}
\lambda-\kappa & 0 \\
0 & -(\lambda-\kappa) u u^{\prime}
\end{array}\right],
\end{aligned}
$$

and so on. Observe the diagonal submatrices only have even powers, the off-diagonal submatrices only have odd powers. Of course the series will converge fast if ϵ is small.

In any case, a convergent power series for a matrix can be turned into a convergent power series for its eigenvalues and eigenvectors. This can be used for perturbation analysis, most easily for the eigenvalues Kato, 1976, Baumgärtel, 1985.

5. $\sin \Theta$ THEOREMS

Alternatively, for the eigenvectors the $\sin \Theta$ theorems may be the more natural way to go [Ipsen, 2000. A relevant recent contribution is Chen and Li 2006].

References

H. Baumgärtel. Analytic Perturbation Theory for Matrices and Operators. Birkhauser, Basel, Boston, Stuttgart, 1985.
X. Chen and W. Li. A Note of the Perturbation Bounds of Eigenspaces for Hermitian Matrices. Journal of Computational and Applied Mathematics, 196:338-346, 2006.
J. De Leeuw. A Note on Partitioned Determinants. Psychometrika, 11: 57-86, 1986.
I.C.F. Ipsen. An Overview of Relative $\sin \Theta$ Theorems for Invariant Subspaces of Complex Matrices. Journal of Computational and Applied Mathematics, 123:131-153, 2000.
T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, Heidelberg, New York, second edition, 1976.

Department of Statistics, University of California, los Angeles, CA 900951554

E-mail address, Jan de Leeuw: de1eeuw@stat.uc1a.edu
URL, Jan de Leeuw: http://gifi.stat.uc1a.edu

