
A PLANE IN MDS CONFIGURATION SPACE

JAN DE LEEUW

1. Problem

The Multidimensional Scaling or MDS problem (of locating n point

in p dimensions) is to minimize the function

(1) σ(X) = 1
2

n∑
i=1

n∑
j=1

wij(δij − dij(X))2

over all n× p matrices X. Here wij are known weights and δij are

known dissimilarities. ToAlso

dij(X) = ‖xi − xj‖ =
√
(xi − xj)′(xi − xj)

is the Euclidean distance between rows i and j of X.

2. Transformation

By choosing a basis Y1, · · · , Ym for the space of all n× p matrices

Rn×p, we can write X in the form

(2) X =
m∑
ν=1

γνYν .

This also makes it possible to consider the more general problem

in which X varies in anm-dimensional subspace of Rn×p. The MDS

problem now becomes minimization of the loss function σ(γ) over

the coefficients in (2).
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Let us introduce some notation to simplify this problem [De Leeuw,

1993]. We can write

d2
ij(γ) = tr(

m∑
ν=1

γνYν)′Aij(
m∑
ν=1

γνYν),

where

Aij = (ei − ej)(ei − ej)′

and ei and ej are unit vectors (columns of the identity matrix).

Define the m×m matrices Cij , with elements

(Cij)νµ = tr Y ′νAijYµ.

Observe the Cij are positive semi-definite. Now

d2
ij(γ) = γ′Cijγ

Suppose, without loss of generality, that the basis Yν is chosen in

such a way that
n∑
i=1

n∑
j=1

wijCij = I.

Then

(3) σ(γ) = 1+ 1
2
γ′γ −

n∑
i=1

n∑
j=1

wijδij
√
γ′Cijγ,

where we have also assumed, without loss of generality, that

1
2

n∑
i=1

n∑
j=1

wijδ2
ij = 1.

The MDS problem, which we call problem P from now on, is clearly

equivalent to minimizing (3) over γ.

3. Necessary Conditions for a Local Minimum

In a neighborhood of each local minimum we have dij(γ) > 0 for

all i 6= j [De Leeuw, 1984]. Thus the loss function is differentiable

at local minima and
∂σ
∂γ
= (I − B(γ))γ,
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with

B(γ) =
n∑
i=1

n∑
j=1

wij
δij
dij(γ)

Cij.

Also
∂2σ
∂γ∂γ

= I −H(γ),

where

H(γ) =
n∑
i=1

n∑
j=1

wij
δij
dij(γ)

[
Cij −

Cijγγ′Cij
γ′Cijγ

]
.

Thus at local minimum we must have

(4a) B(γ)γ = γ,

and in addition

(4b) H(γ) . I.

Or, in words, γ must be an eigenvector of B(γ) corresponding with

an eigenvalue equal to one, and all eigenvalues of H(γ) must be

less than or equal to one. Observe that both B(γ) and H(γ) are

positive semi-definite. Because H(γ)γ = 0 the matrix H(γ) is al-

ways singular. Also note that if H(γ) < I then γ is a local mini-

mum.

The majorization algorithm [De Leeuw, 1977] for MDS takes the

simple form

γ(k+1) = B(γ(k))γ(k),
while the Newton-Raphson method can be written in the form

γ(k+1) = (I −H(γ(k)))−1B(γ(k))γ(k).

4. Relaxation

There is yet another way of rewriting the problem. Define

(5) σ(Γ) = 1+ 1
2

tr Γ − n∑
i=1

n∑
j=1

wijδij
√

tr CijΓ ,
Problem P is now minimizing (5) over all positive semi-definite Γ
of rank one, i.e. all Γ of the form Γ = γγ′.
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Now define problem P, which is the problem of minimizing (5) over

all positive semi-definite matrices Γ , without imposing the rank one

constraint. Problem P is a convex relaxation of problem P, because

the loss function (5) is convex in Γ and in P we require Γ to vary

in a convex set. The necessary and sufficient conditions for a local

(and thus global) minimum in P are

I − B(Γ) & 0,(6a)

Γ & 0,(6b)

tr Γ(I − B(Γ)) = 0,(6c)

where

B(Γ) = n∑
i=1

n∑
j=1

wij
δij
dij(Γ)Cij,

and dij(Γ) = √tr CijΓ .
If the solution Γ̂ of P is of rank one, then Γ̂ = γ̂γ̂′, and obviously γ̂
solves P. This means that not only (4a) and (4b) are satisfied, but

actually γ̂ gives the global minimum of the loss function (3).

If γ̂ is a solution of (4a), then Γ̂ = γ̂γ̂′ satisfies both (6b) and (6c). If

B(γ̂) . I, i.e. if γ̂ is the eigenvector of B(γ̂) corresponding to the

largest eigenvalue, then (6a) is satisfied as well. Thus Γ̂ solves P,

and γ̂ gives the global minimum of (3). Observe that H(γ) . B(γ)
for all γ, which means that for loss function (3) the sufficient con-

dition for a local minimum H(γ) < I is weaker than the sufficient

condition for global minimum B(γ) . I (as it should be, of course).

5. A Plane in Configuration Space

We can obtain some additional results if m = 2, i.e. if X is in a

plane in Rn×p spanned by just two matrices Y1 and Y2. In that case

the solution Γ̂ of P is a matrix of order two. The rank of Γ̂ can

be either zero, one, or two. We can safely exclude Γ = 0, because

we know that at a local minimum all dij(Γ) must be positive. If
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the rank of Γ̂ is two, then B(Γ̂) = I. Because the Cij are linearly

independent this implies that dij(Γ̂) = δij , i.e. σ(Γ̂) = 0. It follows

that if σ(Γ̂) > 0 then Γ̂ is of rank one and gives the global minimum

γ̂ of P.

B(γ)γ = γ means that γ is an eigenvector of both B(γ) and H(γ),
with eigenvalues one and zero, repectively. If m = 2 then γ, which

is orthogonal to γ, is also an eigenvector of both B(γ) and H(γ),
with eigenvalues, say, µ and ξ. We know that 0 ≤ ξ ≤ µ. If 0 ≤ ξ ≤
1 ≤ µ we have a local minimum, if 0 ≤ ξ ≤ µ ≤ 1 we have a global

minimum.
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