A PLANE IN MDS CONFIGURATION SPACE

JAN DE LEEUW

1. Problem

The *Multidimensional Scaling* or *MDS* problem (of locating n point in p dimensions) is to minimize the function

(1)
$$\sigma(X) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (\delta_{ij} - d_{ij}(X))^2$$

over all $n \times p$ matrices *X*. Here w_{ij} are known *weights* and δ_{ij} are known *dissimilarities*. ToAlso

$$d_{ij}(X) = ||x_i - x_j|| = \sqrt{(x_i - x_j)'(x_i - x_j)}$$

is the Euclidean distance between rows i and j of X.

2. TRANSFORMATION

By choosing a basis Y_1, \dots, Y_m for the space of all $n \times p$ matrices $\mathbb{R}^{n \times p}$, we can write *X* in the form

(2)
$$X = \sum_{\nu=1}^{m} \gamma_{\nu} Y_{\nu}.$$

This also makes it possible to consider the more general problem in which *X* varies in an *m*-dimensional subspace of $\mathbb{R}^{n \times p}$. The MDS problem now becomes minimization of the loss function $\sigma(\gamma)$ over the coefficients in (2).

Date: November 29, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 62H25.

Key words and phrases. Multivariate Analysis, Correspondence Analysis.

Let us introduce some notation to simplify this problem [De Leeuw, 1993]. We can write

$$d_{ij}^2(\gamma) = \operatorname{tr}(\sum_{\nu=1}^m \gamma_\nu Y_\nu)' A_{ij}(\sum_{\nu=1}^m \gamma_\nu Y_\nu),$$

where

$$A_{ij} = (e_i - e_j)(e_i - e_j)'$$

and e_i and e_j are unit vectors (columns of the identity matrix). Define the $m \times m$ matrices C_{ij} , with elements

$$(C_{ij})_{\nu\mu} = \operatorname{tr} Y'_{\nu} A_{ij} Y_{\mu}.$$

Observe the C_{ij} are positive semi-definite. Now

$$d_{ij}^2(\gamma) = \gamma' C_{ij} \gamma$$

Suppose, without loss of generality, that the basis Y_{ν} is chosen in such a way that

$$\sum_{i=1}^n \sum_{j=1}^n w_{ij} C_{ij} = I.$$

Then

(3)
$$\sigma(\gamma) = 1 + \frac{1}{2}\gamma'\gamma - \sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\delta_{ij}\sqrt{\gamma'C_{ij}\gamma},$$

where we have also assumed, without loss of generality, that

$$\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\delta_{ij}^{2}=1.$$

The MDS problem, which we call problem \mathcal{P} from now on, is clearly equivalent to minimizing (3) over γ .

3. NECESSARY CONDITIONS FOR A LOCAL MINIMUM

In a neighborhood of each local minimum we have $d_{ij}(\gamma) > 0$ for all $i \neq j$ [De Leeuw, 1984]. Thus the loss function is differentiable at local minima and

$$\frac{\partial \sigma}{\partial \gamma} = (I - B(\gamma))\gamma,$$

2

with

$$B(\gamma) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \frac{\delta_{ij}}{d_{ij}(\gamma)} C_{ij}.$$

Also

$$\frac{\partial^2 \sigma}{\partial \gamma \partial \gamma} = I - H(\gamma),$$

where

$$H(\gamma) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \frac{\delta_{ij}}{d_{ij}(\gamma)} \left[C_{ij} - \frac{C_{ij} \gamma \gamma' C_{ij}}{\gamma' C_{ij} \gamma} \right].$$

Thus at local minimum we must have

$$(4a) B(\gamma)\gamma = \gamma,$$

and in addition

(4b)
$$H(\gamma) \lesssim I.$$

Or, in words, γ must be an eigenvector of $B(\gamma)$ corresponding with an eigenvalue equal to one, and all eigenvalues of $H(\gamma)$ must be less than or equal to one. Observe that both $B(\gamma)$ and $H(\gamma)$ are positive semi-definite. Because $H(\gamma)\gamma = 0$ the matrix $H(\gamma)$ is always singular. Also note that if $H(\gamma) < I$ then γ is a local minimum.

The majorization algorithm [De Leeuw, 1977] for MDS takes the simple form

$$\boldsymbol{\gamma}^{(k+1)} = \boldsymbol{B}(\boldsymbol{\gamma}^{(k)})\boldsymbol{\gamma}^{(k)},$$

while the Newton-Raphson method can be written in the form

$$\gamma^{(k+1)} = (I - H(\gamma^{(k)}))^{-1} B(\gamma^{(k)}) \gamma^{(k)}.$$

4. Relaxation

There is yet another way of rewriting the problem. Define

(5)
$$\sigma(\Gamma) = 1 + \frac{1}{2} \operatorname{tr} \Gamma - \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \delta_{ij} \sqrt{\operatorname{tr} C_{ij} \Gamma},$$

Problem \mathcal{P} is now minimizing (5) over all positive semi-definite Γ of rank one, i.e. all Γ of the form $\Gamma = \gamma \gamma'$.

JAN DE LEEUW

Now define problem $\overline{\mathcal{P}}$, which is the problem of minimizing (5) over all positive semi-definite matrices Γ , without imposing the rank one constraint. Problem $\overline{\mathcal{P}}$ is a *convex relaxation* of problem \mathcal{P} , because the loss function (5) is convex in Γ and in $\overline{\mathcal{P}}$ we require Γ to vary in a convex set. The necessary and sufficient conditions for a local (and thus global) minimum in $\overline{\mathcal{P}}$ are

(6a)
$$I - B(\Gamma) \gtrsim 0$$
,

(6b)
$$\Gamma \gtrsim 0$$
,

(6c)
$$\operatorname{tr} \Gamma(I - B(\Gamma)) = 0$$

where

$$B(\Gamma) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \frac{\delta_{ij}}{d_{ij}(\Gamma)} C_{ij},$$

and $d_{ij}(\Gamma) = \sqrt{\operatorname{tr} C_{ij}\Gamma}$.

If the solution $\hat{\Gamma}$ of $\overline{\mathcal{P}}$ is of rank one, then $\hat{\Gamma} = \hat{\gamma}\hat{\gamma}'$, and obviously $\hat{\gamma}$ solves \mathcal{P} . This means that not only (4a) and (4b) are satisfied, but actually $\hat{\gamma}$ gives the global minimum of the loss function (3).

If \hat{y} is a solution of (4a), then $\hat{\Gamma} = \hat{y}\hat{y}'$ satisfies both (6b) and (6c). If $B(\hat{y}) \leq I$, i.e. if \hat{y} is the eigenvector of $B(\hat{y})$ corresponding to the largest eigenvalue, then (6a) is satisfied as well. Thus $\hat{\Gamma}$ solves \overline{P} , and \hat{y} gives the global minimum of (3). Observe that $H(y) \leq B(y)$ for all y, which means that for loss function (3) the sufficient condition for a local minimum H(y) < I is weaker than the sufficient condition for global minimum $B(y) \leq I$ (as it should be, of course).

5. A PLANE IN CONFIGURATION SPACE

We can obtain some additional results if m = 2, i.e. if X is in a plane in $\mathbb{R}^{n \times p}$ spanned by just two matrices Y_1 and Y_2 . In that case the solution $\hat{\Gamma}$ of $\overline{\mathcal{P}}$ is a matrix of order two. The rank of $\hat{\Gamma}$ can be either zero, one, or two. We can safely exclude $\Gamma = 0$, because we know that at a local minimum all $d_{ij}(\Gamma)$ must be positive. If

the rank of $\hat{\Gamma}$ is two, then $B(\hat{\Gamma}) = I$. Because the C_{ij} are linearly independent this implies that $d_{ij}(\hat{\Gamma}) = \delta_{ij}$, i.e. $\sigma(\hat{\Gamma}) = 0$. It follows that if $\sigma(\hat{\Gamma}) > 0$ then $\hat{\Gamma}$ is of rank one and gives the global minimum $\hat{\gamma}$ of \mathcal{P} .

 $B(\gamma)\gamma = \gamma$ means that γ is an eigenvector of both $B(\gamma)$ and $H(\gamma)$, with eigenvalues one and zero, repectively. If m = 2 then $\overline{\gamma}$, which is orthogonal to γ , is also an eigenvector of both $B(\gamma)$ and $H(\gamma)$, with eigenvalues, say, μ and ξ . We know that $0 \le \xi \le \mu$. If $0 \le \xi \le 1 \le \mu$ we have a local minimum, if $0 \le \xi \le \mu \le 1$ we have a global minimum.

REFERENCES

- J. De Leeuw. Differentiability of Kruskal's Stress at a Local Minimum. *Psychometrika*, 49:111–113, 1984.
- J. De Leeuw. Fitting Distances by Least Squares. Technical Report UCLA Statistics Series 130, Interdivisonal Program in Statistics, UCLA, Los Angeles, California, 1993.
- J. De Leeuw. Applications of Convex Analysis to Multidimensional Scaling. In J.R. Barra, F. Brodeau, G. Romier, and B. Van Cutsem, editors, *Recent developments in statistics*, pages 133–145, Amsterdam, The Netherlands, 1977. North Holland Publishing Company.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu