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Abstract. We present theory and implementation of an algo-

rithm for reduced rank or low-rank approximation of a rect-

angular data matrix, using row and column weight matrices

that defined by covariance structures. The parameters of the

weight matrices are estimated along with the reduced rank ap-

proximation by minimizing the log-likelihood loss function for

the matrix variate normal.

1. Framework

1.1. Coding. Supposed F = (D|O) is a data-frame, with n rows

andm+1 columns. Them columns in D are assume to be factors,

with factor j having kj levels. The single column O is a numerical

variable. We think ofD as the design and ofO as the outcome. Typ-

ical variables in D are, for example, spatial locations, time points,

replications, and indicators for variables.

We could observe, for example, ozone level, PM-10 level, tempera-

ture, and wind-speed for the 365 days of the year 2007, at 10 differ-

ent observation stations. The data frame F will have 4×365×10 =
14,600 rows and 3+ 1 = 4 columns. The first three columns code

for each observation where it was made, on which day, and what

cross-sectional variable it measures. Note that O has the measure-

ments on all four cross-sectional variables. Also note the design is

balanced, unless there are missing data.
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The particular coding of the variables that we have chosen is not

the only possible one. The 10 observation stations may be on a

4×4 rectangular latitude-longitude grid, which can be coded as two

factors with four levels each, instead of one factor with ten levels.

The 365 days may be coded as seven weekdays in 52 weeks, which

again requires two factors instead of one. Clearly using such alter-

native codings in our example may make the design unbalanced.

Not all weekdays will occur equally often in the year, and not all 16

grid points are occupied by observation stations.

There is a different, although isomorphic, way of coding the data,

which may in some cases be more natural. We can use the design

part of the frame to define an array X of rank m and dimension

k1×· · ·×km, in which the measurements from O occupy the cells

of the array. In a balanced design there is one observation in each

cell, in an unbalanced design some cells will be empty. By using

replications as a factor defining a dimension of the array we guar-

antee there is never more than one observation in each cell.

1.2. Data Reduction.

1.3. Earlier Work. In classical multivariate analysis the design has

only two factors, the individuals and the cross-sectional variables.

The array has rank two, in order words it is a matrix of observa-

tions by variables. It is usually assumed that individuals are repli-

cations, which means that the covariance matrix of rows is the

identity, while the covariance matrix of the columns is modeled by

some regression or structural equation model.

2. Specialization

In this paper we discuss a special case of the general framework in

which we have two factors and a balanced design. Thus data can

be collected in a matrix, and there are no missing values. We also
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use a specific bilinear model to describe the means, and we use

covariance structures to describe the row and column covariances.

Thus one could think, for example, of one year of hourly ozone

measurements at a single station, where the design has the factors

days-of-the-year (365 levels) and hours-of-the-day (24 levels).

The data are an n×m matrix X. We want a reduced rank approxi-

mation to X, with weight matrices for both rows and columns. But,

unlike in the classical case [Eckart and Young, 1936; Gabriel and

Zamir, 1979; De Leeuw, 1984], the weight matrices are functions of

unknown parameters, which have to be estimated along with the

reduced rank approximation.

The loss function we use is the deviance1 of a matrix variate normal

distribution [Gupta and Nagar, 2000]

D(θ, ξ, Y) =m log det(Σ(θ))+n log det(Ω(ξ))+
+ tr Σ(θ)−1(X − Y)Ω(ξ)−1(X′ − Y ′).

The constraints on the parameters are rank(Y) ≤ p, while Σ ∈ S(θ)
and Ω ∈ O(ξ) are covariance structures 2.

3. Algorithm

To solve problems of this type, we use a block relaxation method [De

Leeuw, 1994]. The algorithm is quite general, because it can also

be applied to different types of constraints on Y , and to different

parametric models for Σ and Ω.

1The deviance is minus two times the log-likelihood, except for irrelevant

constants.
2A covariance structure S of order n is the image of a function Σ from

an open subset of parameter space Rp to the cone of positive semi-definite

matrices of order n.
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In the unrestricted case, with no constraints on the structure of

the means and covariances (and with a sufficient number of repli-

cations), the same algorithm has been proposed by Mardia and

Goodall, Dutilleul, Lu and Zimmerman. It has been reported (Du-

tilleul) that in this case, which is of course inherently simpler than

the one we consider here, the block relaxation algorithm (some-

what inelegantly described as the “flip-flop algorithm”) outperforms

general purpose optimization methods such as Newton-Raphson.

In our application the update algorithm from iteration k to itera-

tion k+ 1 is

Y(k+1) = argmin
rank(Y)≤p

D(Σ(k),Ω(k), Y ),
Σ(k+1) = argminΣ∈S(θ) D(Σ,Ω(k), Y(k+1)),

Ω(k+1) = argminΩ∈O(ξ) D(Σ(k+1),Ω, Y(k+1)).

The corresponding function values are

D1
(k+1) = min

rank(Y)≤p
D(Σ(k),Ω(k), Y ) = D(Σ(k),Ω(k), Y(k+1)),

D2
(k+1) = minΣ∈S(θ)D(Σ,Ω(k), Y(k+1)) = D(Σ(k+1),Ω(k), Y(k+1)),

D3
(k+1) = minΩ∈O(ξ)D(Σ(k+1),Ω, Y(k+1)) = D(Σ(k+1),Ω(k+1), Y(k+1)).

Obviously

· · · ≤ D3
(k+1) ≤ D2

(k+1) ≤ D1
(k+1) ≤ D3

(k) ≤ D2
(k) ≤ D1

(k) ≤ · · ·

and if the sequence of function values is bounded from below it

converges.

4. Existence of the MLE

Whether the sequence is bounded depends on both X and p. In

the case that rank(X) ≤ p, for example, the algorithm immediately

gives Y = X and the loss function can be made arbitrarily small by
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letting Σ and/or Ω approach any singular matrix. In a related ex-

ample, we know from the fixed factor analysis literature [Anderson

and Rubin, 1956] that fixing Σ = I and letting Ω vary over all diago-

nal matrices always leads to infY ,ΩD(Y ,Ω) = −∞, no matter what

X and p are.

Another example: suppose Σ is an equi-correlation structure. Thus

all diagonal elements are equal to σ 2 and all off-diagonal elements

are equal to σ 2ρ. This means that Σ has one eigenvalue equal to

σ 2(1+ (n− 1)ρ, corresponding to the normalized constant eigen-

vector with elements n−
1
2 , and n−1 eigenvalues equal to σ 2(1−ρ),

corresponding to n − 1 eigenvectors orthogonal to the constant

one. Thus

D = n logσ 2 + log(1+ (n− 1)ρ)+ (n− 1) log(1− ρ)+

+ 1
σ 2

{
1

1+ (n− 1)ρ
α+ 1

1− ρβ
}
,

where α = 1
n

∑n
i=1

∑n
j=1 sij and β =

∑n
i=1 sii − α. If α = 0 then we

make D arbitrary close to −∞ by letting ρ → − 1
n−1 . And if β = 0

we have D→ −∞ if ρ → 1.

The same thing happens if we require Σ to be Toeplitz (also known

in psychometrics as a simplex).

It is clear that these degenerate solutions happen if there is a vec-

tor in the null-space of S which is also in the null-space of Σ. By

construction, S will always be singular.

Suppose that all matrices Σ(θ) commute pairwise. Then they have

an eigenvector in common. Say this is u. Thus Σ(θ)u = λ(θ)u.

Now define Y = uu′X. Then obviously u′(X − Y) = 0 and thus

u′(X − Y)Ω−1(X − Y)′ = 0, and thus we can let D → −∞ if we let

λ(θ)→ 0.

We can prevent degeneracy from happening by making sure that Σ
is always positive definite.
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5. Subproblems

5.1. Optimum Y. We must find

Y (k+1) = argmin
rank(Y)≤p

tr Σ−1
(k)(X − Y)Ω−1

(k)(X
′ − Y ′).

This is a regular weighted least squares reduced rank approxima-

tion problem, with Kronecker product structure for the weights. It

can be solved by using the singular value decomposition.

Suppose Σ(k) = P ′(k)P(k), where P(k) is upper-triangular. Note3 thatΣ−1
(k) = P−1

(k)P
−T
(k) . If Σ(k) ∈ An then an explicit formula for the

Cholesky factors P(k), and their inverses, is given in Appendix A.

In the same way Ω(k) = Q′(k)Q(k) and Ω−1
(k) = Q−1

(k)Q
−T
(k).

Define Z(k) = P−T(k)XQ−1
(k). Then

min
rank(Y)≤p

tr Σ−1
(k)(X − Y)Ω−1

(k)(X
′ − Y ′) = min

rank(U)≤p
tr (Z(k) −U)(Z(k) −U)′.

If

U(k) = argmin
rank(U)≤p

tr (Z(k) −U)(Z(k) −U)′

then we have

Y(k+1) = P ′(k)U(k)Q(k).

We find U(k) by the truncated singular value decomposition of Z(k).

5.2. Optimum Σ. Define then×nmatrix S(k+1) = 1
m(X−Y(k+1))Ω−1

(k)(X−
Y(k+1))′, using the formula for the inverse in appendix A. Then

argminΣ∈An(1) D(Σ,Ω(k), Y(k+1)) = argminΣ∈An(1) log det(Σ)+ tr Σ−1S(k+1).

This means fitting the AR(1) covariances to the “observed covari-

ance matrix” S(k+1) by maximum likelihood. Appendix A shows

that this can be done very simply and efficiently by finding the

roots of a quadratic.

3A−T is the inverse of the transpose, or the transpose of the inverse, of A.
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5.3. Optimum Ω. Finding the optimal Ω is, of course, exactly anal-

ogous to finding the optimal Σ. Instead of the n×nmatrix S(k+1) we

define the m×m matrix W(k+1) = 1
n(X − Y(k+1))′Σ−1

(k+1)(X − Y(k+1)).
Otherwise the formulas are basically the same.

6. Generalizations

6.1. More General Weights.

6.1.1. ARMA. The R code in Appendix C.1 is written in such a way

that it is easy to plug in different weight matrices. In fact, with a

little bit of tweaking it is easy to replace the reduced rank approx-

imation by other linear or non-linear models for the mean of the

matrix variate normal.

As a first step, we could implement AR(p) or ARMA(p,q) covari-

ance structures. This is, however, quite a bit more demanding, be-

cause the covariance matrices Σ and Ω become considerably more

complicated. Using existing time series code in R is complicated by

the fact that this code is written for single series, not for covari-

ance matrices. Also, it uses the general optim() routine to compute

maximum likelihood estimates, which is convenient but computa-

tionally probably suboptimal.

We will look into using exact formulas for the ARMA covariance

structure, such as the ones given in Van der Leeuw [1997], and we

will look into developing special purpose algorithms to minimize

the resulting loss functions.

6.1.2. Cross Sectional.

6.1.3. Spatial.

6.2. Multidimensional Arrays.
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Appendix A. Properties of AR(1) Covariance Matrices

A weakly stationary AR(1) process4 of length n with autocorrela-

tion φ and error variance σ 2 is generated by the recursion y i =
φy i−1

+ εi for i = 2, · · · , n. Here φ2 < 1 and the εi have mean

zero and variance σ 2. Also the εi are uncorrelated with each other

and with y
1
. From stationarity means and variances must be the

same for all i. Thus E(y
1
) = E(y

2
) = φE(y

1
) and E(y

1
) = 0. In the

same way E(y2
1
) = E(y2

2
) = φ2E(y2

1
) + σ 2 and thus E(y2

1
) = σ2

1−φ2 .

It follows that the y i have a covariance matrix V with elements

vij =
σ 2

1−φ2
φ|i−j|.

A.1. Inverse. The inverse V−1 exists if and only if σ 2 > 0 andφ2 6=
1. It is tri-diagonal with elements

vij = 1
σ 2


1 if i = j = 1 or i = j = n,
−φ if |i− j| = 1,

1+φ2 if 1 < i = j < n.

A.2. Cholesky. If V−1 = C′C is the Cholesky decomposition of

V−1, with C upper-triangular, then

cij =
1
σ


1 if 1 ≤ i = j < n,
−φ if j − i = 1,√

1−φ2 if i = j = n.

4Our results are slightly different from those in the time series litera-

ture [Shumway and Stoffer, 2006, p. 125-127] because we deal with the end-

point differently. This is related to the fact that in time series analysis the fi-

nite observed series is embedded in an infinite series, and then statements are

made about that infinite series. For this reason it makes more sense, perhaps,

to call our covariances structure a regular simplex [Guttman, 1955] instead of

an AR(1) covariance matrix.
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It follows that det(C) = 1
σn
√

1−φ2, and thus det(V) = (σ2)n
1−φ2 . Note

that V is positive definite if and only if σ 2 > 0 and φ2 < 1.

We can also compute the Cholesky decomposition V = D′D, with

D upper triangular. This gives

dij =
σ√

1−φ2

φ
j−i if i = 1,√
1−φ2φj−i if j ≥ i > 1.

A.3. Deviance. If S is any matrix of order n then the deviance is

D(φ,σ 2) = log det(V)+tr V−1S = n logσ 2−log(1−φ2)+αφ
2 − 2βφ+ γ
σ 2

,

where

α =
n−1∑
i=2

sii,

β =
n−1∑
i=1

si,i+1,

γ =
n∑
i=1

sii.

Note that if S is positive semi-definite then γ ≥ α ≥ 0. If φ2 < 1

and S 6= 0 we have αφ2 − 2βφ+ γ > 0 and

D(φ,?) ∆=min
σ2
D(φ,σ 2) = log

αφ2 − 2βφ+ γ
1−φ2

+n−n logn,

with the minimum attained at

σ 2(φ) = αφ
2 − 2βφ+ γ
n

.

To find the maximum likelihood estimate of φ we must minimize

f(φ) = αφ
2 − 2βφ+ γ
1−φ2

.

A typical plot of f is in Figure 1. It follows from the positivity of

f on the open interval I = (−1,+1), and the two vertical asymp-

totes, that f has at least one minimum on I . Actually, because f
is the ratio of a positive convex quadratic and a positive concave
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Figure 1. Estimating Autocorrelation
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function, it is explicitly quasi-convex on I and has a unique mini-

mum [Martos, 1975, Theorem 51].

At this minimum the derivative must vanish. The derivative van-

ishes if and only if βφ2 − (α+ γ)φ+ β = 0. If β = 0 the only root

is φ̂ = 0. Otherwise the quadratic equation has two real roots, of

which only one is in I . Note that the product of the two roots of

the quadratic is 1, which implies that f has a local maximum at

1/φ̂, which is outside I . The root in I is the maximum likelihood

estimate φ̂ of φ, which can then be used to compute the maximum

likelihood estimate σ̂ 2 = σ 2(φ̂).

In some cases we may want to consider the situation in which σ 2

is known and we only estimate φ. Because 1 −φ2 is concave, and

the logarithm is an increasing concave function, it follows that

− log(1 − φ2), and consequently D(φ,σ 2), is convex in φ on I .
Again the vertical asymptotes guarantee a unique minimum, which
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is attained at the unique root of the cubic σ 2φ+(αφ−β)(1−φ2) =
0 that lies in I .

Appendix B. Covariances with Linear Structure

Consider the problem of minimizing

D(θ) = log det(Σ(θ))+ tr Σ(θ)−1S,

where

Σ(θ) = r∑
s=1

θsAs ,

and the As are known matrices.

We use the basic results

log det(Σ(θ)+ εAs) = log det(Σ(θ))+ ε tr Σ(θ)−1As + o(ε),

tr [Σ(θ)+ εAs]−1S = tr Σ(θ)−1S − ε tr Σ(θ)−1AsΣ(θ)−1S + o(ε).

Thus the partials are

∂sD(θ) = tr Σ(θ)−1As − tr Σ(θ)−1AsΣ(θ)−1S,

and

∂2
stD(θ) = −tr Σ(θ)−1AsΣ(θ)−1At+

+ 2tr Σ(θ)−1AtΣ(θ)−1AsΣ(θ)−1S.

These formulas are all that is needed to apply the Newton-Raphson

method. We can apply Fisher Scoring by observing that if Σ(θ) ≈ S
then

∂2
stD(θ) ≈ tr Σ(θ)−1AtΣ(θ)−1As ,

which provides a convenient positive semi-definite approximation

to the Hessian.

If the covariance structure is specified instead as

Σ(ξ)−1 =
r∑
s=1

ξsAs ,
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then things simplify considerably. We find

∂sD(ξ) = −tr AsΣ(ξ)+ tr AsS,

and

∂2
stD(ξ) = tr Σ(ξ)AsΣ(ξ)At,

which shows that D in this case is convex in ξ.



14 JAN DE LEEUW

Appendix C. Code

C.1. Core Routines. We give the code for the main function wPCA

(), as well as for the subroutine redRank() that compute an un-

weighted reduced rank approximation, and the subroutine ar_ml

() that uses the method of Appendix A to compute the maximum

likelihood of the AR(1) parameters from a covariance matrix.

1 source("../../lincov/lincov.R")

2

3 wPCA<-function(x,gR,gC,mlFuncR=linCov,mlFuncC=linCov,

ndim=2,oeps=1e-6,ieps=1e-6,otmax=100,itmax=100,

overbose=TRUE,iverbose=TRUE){

4 n<-nrow(x); m<-ncol(x); pR<-dim(gR)[3]; pC<-dim(gC)[3]

5 thR<-rep(0,pR); thC<-rep(0,pC); thR[1]<-1; thC[1]<-1

6 sig<-gR[,,1]; ome<-gC[,,1]; ofunc<-Inf; itel<-1

7 repeat {

8 schol<-chol(sig); ochol<-chol(ome)

9 schiv<-solve(schol); ochiv<-solve(ochol)

10 xx<-crossprod(schiv,x)%*%ochiv

11 rr<-redRank(xx,ndim)

12 a<-crossprod(schol,rr$a)

13 b<-crossprod(ochol,rr$b)

14 y<-tcrossprod(a,b)

15 res<-x-y; rss<-rr$rss

16 funL<-rss+m*log(det(sig))+n*log(det(ome))

17 s<-res%*%solve(ome,t(res))/m

18 vR<-mlFuncR(s,gR,thR,eps=ieps,itmax=itmax,verbose=

iverbose)

19 thR<-vR$th; sig<-vR$sig; funR<-m*(vR$f)+n*log(det(

ome))

20 w<-crossprod(res,solve(sig,res))/n

21 vC<-mlFuncC(w,gC,thC,eps=ieps,itmax=itmax,verbose=

iverbose)
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22 thC<-vC$th; ome<-vC$sig; funC<-n*(vC$f)+m*log(det(

sig))

23 if (overbose)

24 cat("Iteration ",formatC(itel,digits=4),

25 "lssloss ",formatC(funL,digits=6,width=10)

,

26 "llrloss ",formatC(funR,digits=6,width=10)

,

27 "llcloss ",formatC(funC,digits=6,width=10)

,

28 "\n")

29 nfunc<-funC

30 if ((abs(ofunc - nfunc) < oeps) || (itel == otmax)

) break()

31 itel<-itel+1; ofunc<-nfunc

32 }

33 return(list(a=a,b=b,y=y,sig=sig,ome=ome,thC=thC,thR=

thR,dev=nfunc))

34 }

35

36 redRank<-function(x,p=2){

37 s<-svd(x,nv=p,nu=p); u<-as.matrix(s$u); v<-as.matrix(s

$v); d<-s$d[1:p]

38 return(list(a=u,b=t(d*t(v)),rss=sum(s$d[-(1:p)]^2)))

39 }

C.2. Utilities. Because the Cholesky factor, inverses, and determi-

nants of an AR(1) covariance matrix are simple functions of the

two parameters σ 2 and φ we can use special routines that bypass

the usual R routines chol(),det() and solve(). This save a huge

number of multiplications, and we have to worry less about pivot-

ing and rounding errors. For greater efficiency, these AR utilities

should be translated to C.
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1 ar_cov<-function(sig,phi,n)

2 return((sig/(1-phi^2))*phi^abs(outer(1:n,1:n,"-"))

)

3

4 ar_log_det<-function(sig,phi,nr)

5 return(nr*log(sig)-log(1-phi^2))

6

7 ar_ml<-function(a) {

8 nr<-nrow(a); phi<-0

9 gam<-sum(diag(a))

10 alp<-gam-(a[1,1]+a[nr,nr])

11 bet<-sum(a[outer(1:nr,1:nr,function(x,y) x-y==1)])

12 dis<-sqrt((alp+gam)^2-bet^2)

13 if (!(bet == 0))

14 phi<-((alp+gam)-dis)/(2*bet)

15 g<-(alp*phi^2)+gam-(2*bet*phi)

16 sig<-g/nr

17 dev<-(nr*log(g)+nr)-(log(1-phi^2)+nr*log(nr))

18 return(list(sig=sig,phi=phi,dev=dev))

19 }

20

21

22 ar_inv_mat<-function(x,sig,phi) {

23 n<-nrow(x); z<-x

24 z[1,]<-x[1,]-phi*x[2,]

25 for (i in 2:(n-1))

26 z[i,]<-(1+phi^2)*x[i,]-phi*(x[i-1,]+x[i+1,])

27 z[n,]<-x[n,]-phi*x[n-1,]

28 return(z/sig)

29 }

30

31 ar_mat_inv<-function(x,sig,phi) {

32 m<-ncol(x); z<-x

33 z[,1]<-x[,1]-phi*x[,2]
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34 for (i in 2:(m-1))

35 z[,i]<-(1+phi^2)*x[,i]-phi*(x[,i-1]+x[,i+1])

36 z[,m]<-x[,m]-phi*x[,m-1]

37 return(z/sig)

38 }

39

40 ar_mat_chol_inv_up<-function(x,sig,phi) {

41 m<-ncol(x); z<-x

42 z[,1]<-x[,1]

43 for (i in 2:(m-1))

44 z[,i]<-x[,i]-phi*x[,i-1]

45 z[,m]<-sqrt(1-phi^2)*x[,m]-phi*x[,m-1]

46 return(z/sqrt(sig))

47 }

48

49 ar_chol_inv_lw_mat<-function(x,sig,phi) {

50 n<-nrow(x); z<-x

51 z[1,]<-x[1,]

52 for (i in 2:(n-1))

53 z[i,]<-x[i,]-phi*x[i-1,]

54 z[n,]<-sqrt(1-phi^2)*x[n,]-phi*x[n-1,]

55 return(z/sqrt(sig))

56 }

57

58 ar_chol_lw_mat<-function(x,sig,phi) {

59 n<-nrow(x)

60 return(crossprod(ar_chol(sig,phi,n),x))

61 }

62

63 ar_mat_chol_up<-function(x,sig,phi) {

64 m<-ncol(x)

65 return(x%*%ar_chol(sig,phi,m))

66 }

67
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68 ar_chol<-function(sig,phi,n) {

69 a<-phi^abs(outer(1:n,1:n,"-"))

70 a[1,]<-a[1,]/sqrt(1-phi^2)

71 return(sqrt(sig)*rm_low_diag(a))

72 }

73

74 ar_inv_chol<-function(sig,phi,n) {

75 a<-diag(n); a[n,n]<-sqrt(1-phi^2)

76 a[cbind(1:(n-1),2:n)]<--phi

77 return(a/sqrt(sig))

78 }

79

80 rm_low_diag<-function(a) {

81 n<-nrow(a); nn<-1:n

82 return(a*ifelse(outer(nn,nn,"<="),1,0))

83 }
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