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ABSTRACT. We study the weighted least squares fixed rank approximation prob-

lem in which the weight matrices depend on unknown parameters. The classical

example is fixed score factor analysis (FSFA), where the weights depend on the

unknown uniquenesses.

1. INTRODUCTION

Factor Analysis (FA) is a class of techniques to approximate a data matrix by a
matrix of the same dimension but of lower rank. In order words, we have an n×m
matrix X and an integer 1≤ p≤min(n,m), and we want to find an n× p matrix A
of factor scores and an m× p matrix B of factor loadings such that X ≈ AB′.

The obvious translation into an optimization problem with a real-valued loss func-
tion is to minimize ‖X −AB′‖ over A and B, with ‖ • ‖ some norm or semi-norm.
The norm is usually unitarily invariant, and of course more often than not of the
weighted least squares type. A fairly general treatment is in De Leeuw [1984], also
see Zha [1991].

In Common Factor Analysis (CFA) we want, in addition, that the residuals X −Y
are approximately orthogonal by columns. Thus we want to find A and B such
that X ≈ AB′ as well as offdiag{(X−AB′)′(X−AB′)} ≈ 0. Because we now want
two things, instead of just one, the choice of the loss function becomes much less
straightforward.

But before we discuss some of the more common loss function alternatives below,
we generalize CFA by replacing the requirement of orthogonality of the residuals
by the more general requirement that (X−AB′)′(X−AB′) is approximately in Sm,
where Sm is a subset of the convex cone of positive semi-definite matrices of order
m. The diagonal matrices defining CFA are just a special case of this.
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2. MULTINORMAL MAXIMUM LIKELIHOOD

Consider the multinormal maximum likelihood problem

(1a) inf
Σ∈Sm

inf
rank(Y )≤p

∆F(Y,Σ),

where

(1b) ∆F(Y,Σ) = logdet(Σ)+ tr Σ
−1(X−Y )′(X−Y ),

and where Sm is a subset of the convex cone of positive definite matrices of order
m.

This is a straightforward generalization of maximum likelihood estimation in fixed
score factor analysis as described by Young [1940]. In factor analysis the set S

are the diagonal matrices. For that reasons we call the technique in which we can
handle more general classes of weight matrices Generalized Fixed Score Factor
Analysis or GFSFA.

In FSFA, as Lawley [1942] found, implementation of a straightforward block re-
laxation algorithm, in which we alternate minimization over Y of rank p for fixed
Σ and minimization over diagonal Σ for fixed Y , leads to an unbounded decreasing
sequence of loss function values. Thus the minimum is not attained, and the min-
imizer, which would give the maximum likelihood estimate in the FSFA model,
does not exist. An actual proof was given by Anderson and Rubin [1956, section
7.7].

In this short note we generalize the result to GFSFA, with more general sets Sm.

Theorem 2.1. Suppose Σn ∈S is a sequence of positive definite matrices of or-
der m, converging to Σ0, where Σ0 has rank m− 1. Suppose u is the normalized
eigenvector satisfying Σ0u = 0 and assume Σnu = λnu for all n. Then if p > 0 we
have

lim
n→∞

min
rank(Y )≤p

∆(Σn,Y ) =−∞.

Proof. Suppose u is the unique (up to sign) unit length vector in the null space of
Σ0. Because Σ0 commutes with Σn the vector u is also an eigenvector of Σn. Set
Y = Xuu′ so that X−Y = X(I−uu′) and (X−Y )′(X−Y ) = (I−uu′)X ′X(I−uu′).
Moreover rank(Y ) ≤ 1 ≤ p. Then, by continuity the smallest eigenvalue and the
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corresponding eigenvector,

lim
n→∞

tr Σ
−1
n (X−Y )′(X−Y ) = lim

n→∞
tr (I−uu′)Σ−1

n (I−uu′)X ′X = tr Σ
+
0 X ′X ,

which is a finite non-negative number. On the other hand

lim
n→∞

logdet(Σn) =−∞.

�

Example 2.1. For Anderson and Rubin’s result we take a sequence of positive
definite diagonal matrices for which exactly one diagonal element converges to
zero. All other diagonal elements can be fixed at one. Clearly Theorem 2.1 also
applies if S contains the set of all diagonal matrices, for example if S is the set
of all positive definite tri-diagonal matrices.

Example 2.2. Suppose S are the equi-correlation matrices, i.e. correlation matri-
ces with all correlations equal to ρ . We can choose Σ0 as the matrix with ρ =− 1

n−1 .
This also proves, for example, that Theorem 2.1 applies to the symmetric positive
definite Toeplitz correlation matrices, which has the equi-correlation matrices as a
subset.

Note that the condition in the Theorem is sufficient for the log likelihood to be
unbounded, but it is not necessary. We have a similar result if rank(Σ0) = m− 2
and p > 1.

3. REMEDIES

3.1. Smaller Covariance Structures. One obvious way around the problem that
maximum likelihood estimates do not exist is to work with a smaller Sm, which
does not have a singular matrix of rank m−1 in its closure.

In FSFA Young [1940] and Whittle [1952], for example, suggests to work with the
scalar matrices σ2I. More generally, we could use σ2D, where D is any positive
definite matrix. Jöreskog [1962], for example, suggests to choose D equal to the
diagonal matrix with elements s2

j(1−R2
j), where s2

j is the sample variance of vari-
able j and R2

j is the multiple correlation of variable j with the remaining m− 1
variables. In any case, we can find the maximum likelihood estimate of Y by com-
puting the first p singular values and singular vectors of XD

1
2 and then compute the

maximum likelihood estimate of σ2 from the sum of squares of the m− p smallest
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singular values. Computations are trivial, compared to the complicated iterative
procedures in the general case.

In GFSFA we can replace the set of all Toeplitz matrices, for example, by the set of
all matrices with elements σi j = σ2ρ |i− j|, where −1 < ρ < +1. These are special
Toeplitz matrices, known as Kac-Murdoch-Szego matrices, after Kac et al. [1953],
or AR(1) covariance matrices. They are nonsingular if σ2 > 0, and the only non-
zero singular matrices in the closure are the matrices with ρ = ±1, which are of
rank 1.

Alternatively we can also use constraints on the parameters that rule out degenera-
cies. In the equi-correlation case, for example, we may require ρ ≥ 0, which rules
out the singular matrix that causes the problems.

3.2. Smaller Mean Structures. The constraint rank(Y )≤ p is equivalent to Y =
AB′, where A and B are unknown matrices of dimension n× p and m× p. We can
require, instead, that Y = AT B′, with A and B known, or partially known, and T
unknown. This is a Pothoff-Roy model, described in the context of growth curve
analysis by Pothoff and Roy [1964]. Clearly there is a range of models here, going
from A and B completely known (the regression situation) to A and B completely
unknown (the principal component situation). The more structure we impose on Y ,
the less structure we have to impose on Σ, presumably.

3.3. Augmented Least Squares.

3.4. Random Scores. The log-likelihood so far has been based on the model of
n i.i.d. random variables xi ∼N (Bai,Σ). We use the convention of underlining
random variables [Hemelrijk, 1966].

Alternatively we can assume that N (Bai,Σ) is the conditional distribution of xi

given ai = ai, where the ai are i.i.d N (0,Ω). It follows that xi ∼N (0,Σ+BΩB′).

In this case the negative log-likelihood is

∆R(B,Σ,Ω) = logdet(Σ+BΩB′)+ tr X(Σ+BΩB′)−1X ′.

This loss function can be written in different forms, using familiar matrix identities
(see, for example, De Hoog et al. [1990] or De Leeuw and Meijer [2008, p. 65]).
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tr X(Σ+BΩB′)−1X ′ = min
A

{
tr Σ

−1(X−AB′)′(X−AB′)+A′Ω−1A
}

=

= tr X(Σ−1−Σ
−1B(Ω−1 +B′Σ−1B)−1B′Σ−1)−1X ′.

logdet(Σ+BΩB′) = logdet(Σ)+ logdet(Ω)+ logdet(Ω−1 +B′Σ−1B) =

= logdet(Σ)+ logdet(B′Σ−1B)+ logdet(Ω+(B′Σ−1B)−1).

3.5. Maximum Likelihood Ratio. Suppose Sm ⊂ Cm are two sets of positive
definite matrices. The likelihood ratio test for testing Sm within Cm computes

Lp(X) = inf
rank(Y )≤p

inf
Σ∈Sm

∆(Σ,Y )− inf
rank(Y )≤p

inf
Σ∈Cm

∆(Σ,Y ).

As we have seen in many cases both terms are equal to −∞, the maximum likeli-
hood estimates do not exist, and the test cannot be used.

It was suggested by McDonald [1979], also see Etezadi-Amoli and McDonald
[1983], to compute instead

Mp(X) = inf
rank(Y )≤p

[
inf

Σ∈Sm
∆(Σ,Y )− inf

Σ∈Cm
∆(Σ,Y )

]
.

This amounts to computing “maximum likelihood ratio estimates” or MLR esti-
mates. In the case of factor analysis we can choose Sm as the diagonal matri-
ces and Cm as the set of all positive definite matrices. Then, with S(X −Y ) =
(X−Y )′(X−Y ),

inf
Σ∈Sm

∆(Σ,Y ) = logdet(diag(S(X−Y )))+m,

inf
Σ∈Cm

∆(Σ,Y ) = logdet(S(X−Y ))+m,

and thus the MLR loss is

Mp(X) = inf
rank(Y )≤p

− logdet(R(X−Y )) =− log

{
sup

rank(Y )≤p
det(R(X−Y ))

}
,

where R(X −Y ) is the correlation matrix of the residuals X −Y . Thus we are
maximizing the determinant of the correlation matrix of the residuals, which means
making it as close to the identity as possible (in the determinant metric). This seems
to be a perfectly respectable loss function for factor analysis, especially because
− logdet(R(X −Y )) ≥ 0, which means the MLR loss function is bounded from
below.
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3.6. Noncentral Wishart. Anderson and Rubin [1956, section 11]
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