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SQUARED EUCLIDEAN DISTANCE SCALING
BY POLYNOMIAL MAJORIZATION

JAN DE LEEUW

ABSTRACT. Meet the abstract. This is the abstract.

1. PROBLEM

In squared distance Euclidean multidimensional scaling we minimize a loss

function of the form

(1) o(X)=) .

n
=1 j=

wij(8ij — di5(X))?.
1

over the n X r matrices X. The matrix X is the configuration or the map, r is
the dimensionality of the map. The w;; are known positive weights, the §;;
are known non-negative dissimilarities. The quantity dizj (X) is the squared

Euclidean distance between rows i and j of X.

Our first example are the railway distances in kilometers between four cities
in The Netherlands, taken from the EUrail website. They are given below
the diagonal in table I}

Date: Thursday 30" June, 2011 — 16h 19min — Typeset in TIMES ROMAN.

Key words and phrases. Template, IATEX.
1


http://www.eurail.com/countries/netherlands/the-netherlands-train-travel

2 JAN DE LEEUW

Amsterdam - 0.103 0.022 0.556
’s-Hertogenbosch | 59 - 0.023 0.721
Utrecht 27 28 - 0.398
Groningen 137 156 116 -

TABLE 1. Rail Distances

For convenience we rescale the data such that the weighted sum of squares
of the squared railway distances is 1. With units weights this gives the
elements above the diagonal of table

2. USE OF BASES

We can get rid of rotational and translational indeterminacy parametrizing

the configuration as

Al 0 O
B H|x; x
U x3 0
G|x4 x5

X

Amsterdam is in the origin and the line Amsterdam-Utrecht is along the

horizontal axis.

We can write this new parametrization in the form

)4
©) X =Y xU.
s=1

In our railway example p = 5 and the U are 4 X 2 unit matrices with all
elements equal to zero and only a single element equal to one. In other
examples we can have other bases of n X p matrices for the space of con-
figurations, not necessarily binary or orthogonal. In fact using bases is an

effective way to impose linear constraints on the configuration.
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Now define matrices E;; of order n which have elements (i,i) and (j, /)
equal to +1, and elements (i, j) and (j,i) equal to —1. All other elements
are zero. Thus d7;(X) = tr XE;;X'. By using (2) we see that

xex;tr U.E; U/

Kt § At B

M~

B =Y

s=1t=1

and by defining A;; as the p x p matrix with element (s,7) equal to

tr U.E; ;U = tr E;;U/U;

we can write dl-zj (X) =x'Ajjx.

Using our normalizations see that we can fit a subset of K of all possible

distances by minimizing

K K
3) o(x)=1-2x{ Z Wi OkAg Jx + Z wi (X Agx)?.
k=1 k=1

3. CHANGE OF VARIABLES

Suppose K are the eigenvectors and A? is the corresponding diagonal matrix
of eigenvalues of B = Zszl Wi O Ay

Change the variables to y = AK’x. Then

K
o(y) =1-2yy+ Y wi(yYHy)?,
k=1
where H, = A~'K'AtKA~!, with A~! the Moore-Penrose inverse. Note
that ZE:I wi O Hy, = 1.

Now write y in the form y = Bz, with 7’z = 1. This additional change of

variables gives

6(B) = 1- 2B+ B* Y we(Z Heo)?,
k=1

and
1

Yr wi(ZHyz)?

HEHG(LB) =1-
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where the minimum is attained for

p? = :

Yo wi(ZHiz)?

This shows we can also solve our original problem by computing the mini-

mum of

(z sz

IIMN

over 7'z = 1. Then scale the solution to find the optimal y, transform back

to find the optimal x, and use the basis to find the optimal X.

4. MAJORIZATION

Optimizing 7(z) over 7z = 1 is done in this paper by majorization [De
Leeuw, |1994; Heiser, 1995; Lange et al., 2000]. In De Leeuw and Groenen
[2011] a quadratic majorization method is developed which uses bounds on
the individual elements of the Hessian to arrive at an upper bound for its

spectral norm.

The gradient of 7 is

K
g(z) =4 wi(ZHz)Hz,
=1

and the Hessian is
=4 Z Wk{(Z/HkZ)Hk + 2HkZZ/Hk}-
k=1
This gives the elementwise bound
K
ht(z) <4 Y wid Al (Hi)se| 4+ 2(ue) st}
k=1

where element s of u; is the £, norm of row s of Hy, and Ay is the largest
eigenvalue of Hy. Thus

K
@ IHE < 4maxy. Y wil (ZH)Hi-+ 2Hi H).
' t k=1
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The algorithm is

iy _ 29— 18(EY)

(5) < - )
120 — 2g(z0)]

with L the bound from (@).

5. EXAMPLES

An implementation in R is given in the Appendix. It is written in a straight-
forward way, with small examples in mind. In actual applications we can
use the sparsity of the usual bases to greatly improve both storage require-

ments and computational efficiency.

5.1. Four Cities. Starting with a z{%) that has all elements equal to %\/3 we
need 282 iterations to arrive at a change in function value less than 1E — 6.

The minimum loss function value is 0.003089.

6. DISCUSSION

Further research is needed to improve the bound of (@), to efficiently use the
sparsity of the bases, and to apply acceleration techniques such as the ones
in [De Leeuw|[2008a,b]].
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APPENDIX A. CODE

data <- matrix(c

(1,1,1,2,2,3,2,3,4,3,4,4,1,1,1,1,1,1,59,27,137,28,156,116),

data [,4] <- data [, 4] *
data [,4] <= data [, 4] /
base <- array (0, c(4, 2,
base [2, 1, 1] <=1

base [2, 2, 2] <=1

base [3, 1, 3] <=1

base [4, 1, 4] <=1

base [4, 2, 5] <~ 1
library (smacof)

data (stardist)

stardata <- matrix (0, 714

stardatal, 1]
stardatal, 2]
stardatal, 3]
stardatal(, 5]
stardatal, 4]

2

sgrt (sum (data [, 3]

5))

0, 5)

* data

[l

4]

A

6,

2))

<= outer(l:l20,rep(0,120),"+")[outer(l:lZO,l:lZO,">")]

<=

outer (rep(0,120),1:120,"™") [outer (1:120,1:120,"™")]

<- 1

<- as.vector(

<=

stardist)

(stardatal[,5]172) /sgrt (sum(stardatal[,5]1"4))

starbase <- array (0, c(120, 2, 240))
k <=1
for (i in 1:120) {
for (3 in 1:2) {
starbase [1, Jj, k] <=1
k <=k +1
}
}
starbase <- starbasel[,,c(3,5:240)]
mkCC <- function (base) {
d <= dim (base)
m <= d [3]
n <- d [1]
cc <- array (0, c(m, m, n * (n - 1) / 2))
for (s in 1 : m) {
for (£t in 1 : m) {
w <- tcrossprod (base [, ,
k <=1

s],base

[l

t])
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mkBB <—

mkSS

mkHH
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for (1 in 1: (n - 1)) |
for (j in (1 + 1) : n) {

cc [s, £, k] <= w[i, i] + w[3,

I - wli, 31 - wlj, 1]

k <— k + 1

}

return (cc)

function (data, cc) {
m <= dim (cc) [3]
n <= dim (cc) [1]
bb <- matrix (0, n, n)
for (i in 1:m) {
bb <- bb + data [i, 3] * datali, 4] * cc[, , 1]
}
return (bb)

<- function (bb) {

eb <- eigen (bb)
return (eb $ vectors %x% diag (1 / sgrt (eb $ values)))

<- function (ss, cc) {

m <= dim (cc) [3]
hh <- array (0, dim (cc))
for (1 in 1:m) {

hh[, , 1] <= t (ss) %x*% cc[, , 1] %x% ss

}
return (hh)

hessBound <- function (data, hh) {

m <- dim (hh) [3]
k <= dim (hh) [1]
hb <- matrix (0, k, k)
for (i in 1 : m) {
hi <= hh [, , 1]
ha <- abs (hi)

]
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hs <- max (Mod (eigen (hi, only.values = TRUE) $ values)
)
print (hs)
hr <- sgrt (rowSums (hi ~ 2))
hb <- hb + data [i, 3] = (hs * ha + 2 * outer (hr, hr))
}

return (max (rowSums (hb)))

mds2 <- function (data, base, xold = rep(l, dim (base) [3]), itmax =
10000, eps = le-6, verbose = TRUE) {

cc <- mkCC (base)
ss <- mkSS (mkBB (data, cc))
hh <- mkHH (ss, cc)
K <- hessBound (data, hh)
xold <- xold / sgrt (sum (xold "2))
fold <- Inf
itel <~ 1
m <- dim (base) [3]
k <= dim (data) [1]
w <= data [, 3]
repeat {

dd <= rep (0,k)

tt <- matrix (0, m, m)

fnew <- 0

for (i in 1 : k) {

dd [i] <= xold %*% hh [, , 1] %x*% xold

fnew <- fnew + w [i] % dd [1] "2
tt <~ tt + w [i] x dd [i] = hh [, , 1]
}
if (verbose) {
cat ("Iteration: ",

formatC (itel, digits = 6, width = 6),

" fold: ",

formatC (fold, digits = 10, width

15, format:"f"),
" fnew: "
formatC (fnew, digits = 10, width = 15, format:"f"),
" diff: "
formatC (fold - fnew, digits = 10, width = 15, format="f
") ,
"\n")
}
xnew <- xold - 2 x drop (tt %$*% xold) / K
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123 xnew <- xnew / sgrt (sum (xnew * 2))

124 if (((fold - fnew) < eps) || (itel == itmax)) {
125 break

126 }

127 xold <= xnew

128 fold <= fnew

129 itel <- itel + 1

130 }

131 xnew <- xnew x sgrt (fnew)

132 stress <- 1 - 1 / fnew

133 xnew <- ss %*% xnew

134 xconf <- array (0, dim (base) [1:2])

135 for (i in 1 : m) {

136 xconf <- xconf + xnew [i] * base [, , 1]
137 }

138 return (list (itel = itel, x = xconf, stress = stress))
139
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