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ORTHOGONAL AND INDEPENDENT COMPONENT ANALYSIS

JAN DE LEEUW

ABSTRACT. This is aunified presentation of Principal Component Anal-
ysis (PCA), Factor Analysis (FA), and Independent Component Analysis
(ICA), in both linear and nonlinear versions. We do not embed the tech-
niques in an inferential framework with unobservable random variables

or probabilities but present the as matrix approximation methods.

1. LS APPROXIMATION IN THE LINEAR CASE

1.1. Linear PCA. Suppose Y is an n X p data matrix. In PCA we minimize
(1) oy(X,A) =SSQ(Y —XA")

over the n X r matrices X of component scores and the p x r matrices A
of component loadings. We typically identify the problem by requiring
X’X =1, which implies that » < p. The solution is usually found by singular
value decomposition of ¥, and the minimum loss function value is the sum

of the p — r residual singular values.

Instead of measuring loss directly by fitting the approximation to the data,
we can also fit a closely related approximation to the cross products. If
Y = XA’, with X’X = I, then C = Y'Y = AA’. Thus alternatively we can

minimize
) oc(A) =SSQ(C —AA").
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The solution is found from the eigenvalue decomposition of C, and the min-
imum loss function value is the sum of the p — r residual eigenvalues, i.e.

the sum of squares of the p — r residual singular values of Y.

In this most basic case approximating the data matrix and approximating
the cross products give the same results. But this equivalence no longer
holds for more complicated cases in which there are missing data, or trans-

formations of the variables, or constraints on the loadings.

1.2. Linear FA. In FA we minimize
(3) oy (X,A,U,D) =SSQ(Y —XA'—UD)

over the common factor scores X and common factor loadings A as before,
but in addition we minimize over the n x p matrix U of unique factor scores
and the p x p diagonal matrix of unique loadings. We again assume (in
exploratory factor analysis) that X’X = I, and in addition that X'U = 0 and
U'U = 1. The minimization problem is more complicated in this case [De
Leeuw, 2004} Unkel and Trendafilov,, 2010].

Again there is a cross product version, which is derived by “ignoring er-
rors”. That phrase simply means that if ¥ = XA+ UD, with (X | U) or-
thonormal, then C = Y'Y = AA’ + D?. In fact the “Fundamental Theorem
of Factor Analysis” tells us that the reverse implication is true as well, al-
though the scores (X | U) cannot be recovered uniquely from Y,A, and D.
See Appendix [B|for the precise result. The cross product loss is

4 oc(A,D) =SSQ(C —AA' — D?).

In the FA case minimizing data loss (3)) and cross product loss () generally

give different results, except in the case of perfect fit.

1.3. General. Both linear PCA and linear FA can be thought of as mini-
mizing loss functions ((I)) or (2)), but with different constraints on the scores
and loadings. PCA is basically unconstrained, the orthogonality constraints
are just used for identification. In FA, because of the diagonality constraints

on the unique loadings, the number of factors is larger than the number
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of variables. This causes some indeterminacy, but it does not really mod-
ify the basic iterative algorithms. Thus it makes sense to think of Linear
Component Analysis (LCA) as a general matrix approximation technique,
with various restrictions on the loadings and scores, and with the number of
components not necessarily smaller than the number of variables. This also
makes Confirmatory Factor Analysis, with linear constraints on the com-
mon factor loadings, a form of LCA. In addition, Nonnegative Components

Analysis, with non-negative loadings, fits in this framework as well.

In the same way as we have derived loss functions defined on the cross
products, we could also derive loss functions derived on higher order mul-
tivariate moments or cumulants. But because we require only orthogonality
of scores, not independence, this is not particularly natural and just leads
to complicated fitting problems. By "ignoring errors" we see, for example,
that

r r r

n
(5a) Y viyieve =Y. Y Y hauajsana,
i=1

s=1t=1u=1

with “core array”

(5b) hsty = XisXitXiu -

i=1
Orthonormality does not give any additional structure to the core array, and
the minimization of the loss function defined on third order moments will be

complicated (although it could be used to make FA solutions determinate).
1.4. Extensions.

1.4.1. Weighted Loss. There are other ways of measuring distance between
Y and XA’, or between C and AA’.

1.4.2. Asymptotically Distribution Free Loss. For data matrix distances var-
ious power norms have been tried, regularization penalty terms have been
added, and so on. This leads to robust and sparse versions of component

analysis. The basic idea of direct matrix approximation is preserved.
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For cross product matrix distances a fairly general approach has been pro-
posed by Swain|[[1975]] in the case of exploratory linear FA. We have R code
for this. Most of the Swain alternative distances are variations of multinor-
mal maximum likelihood (i.e. the KL distance), but there are also asymp-
totically distribution free methods which use weighted least squares, with

weights computed from fourth order product moments.
1.4.3. LPCA and LFA with Missing Data.

1.4.4. LPCA and LFA with Optimal Scaling.

2. INDEPENDENT COMPONENT ANALYSIS

We can go from orthogonality to independence. In this context, “indepen-

dence” of the components is

n m m

Q a

(6) Z Wi Hxisx = H Wixiss
i=1 j=li=1

j=1

IM:

where w is a vector with non-negative weights adding up to one. This con-
straint is imposed for a number of vector of integer powers . This gen-
eralizes orthogonality, and is equivalent to it if we only consider product

moments up to order two.

It is difficult to directly impose the constraints (6) when fitting LCA to the
data matrix. But the constraints become useful when deriving loss func-
tions based on higher order product moments (or, preferably, cumulants).

Using (6)) dramatically simplifies the core array of (5b).

This does leads directly to Linear Independent Component Analysis [Hyviri-
nen et al., 2001; Comon and Jutten, 2010], and to multilinear decomposi-
tion of multidimensional arrays of cumulants. New algorithms for LICA
are being developed at UCLA Statistics in the dissertation project of Irina
Kukuyeva.
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3. POLYNOMIAL COMPONENT ANALYSIS

We can go from linearity to polynomiality, giving Polynomial Component
Analysis, with both orthogonal and independent versions (POCA and PICA).

The approximation we are fitting is, for column j of the data matrix,
y] %Pj(-xla"' v-xr)a

with the P; multivariate polynomials and with the columns of X either or-
thonormal or “independent”. Again, in the case of constraints (), we would
not impose them directly but switch to a loss function defined on the higher

order product moments.

New algorithms for POCA are being developed at UCLA Statistics in the
dissertation project of Kekona Sorensen.
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APPENDIX A. LINEAR FACTOR ANALYSIS

In LCA with data-loss we minimize 6 (X,A) =SSQ(Y —XA’) over X'X =1
and A, possibly with constraints on A. Y is n xm, X is n X p, and A is
m x p. We do not exclude cases in which p > m, and/or in which rank(Y') <

min(n,m).
Define 6 (*,A) = miny/y_; 6(X,A). Then

o(x,A) =SSQ(Y)+SSQ(A) — 2)2}(axltr X'YA
Suppose Z2YA is an n x p matrix of rank r. Consider the problem of
maximizing tr X'Z over the n x p matrices X satisfying X’X = I. This
is known as the Procrustus problem, and it is usually studied for the case

n > m =r. We want to generalize ton > m > r.

For this, following De Leeuw [2004], we use the singular value decompo-

sition
A 0 L
7 — K Ko rxr rx(p—r) rxp
nXr  px(n—r) 0 0 L6

(n—r)xr (n—r)x(p—r) (p—r)xp

Theorem A.1. The maximum of tr X'Z over n x p matrices X satisfying
X'X =Iistr A, and it is attained for any X of the form X = KL +K,VL;,
where V is any (n—r) x (p — r) matrix satisfying V'V = I.

Proof. Using a symmetric matrix of Lagrange multipliers M leads to the
stationary equations Z = XM, which implies Z'Z = M? or M = + (Z'2)"/2.
It also implies that at a solution of the stationary equations tr X'Z = & tr A.

The negative sign corresponds with the minimum, the positive sign with the

maximum.
Now
A 0 L
M= L Lo rxr rx(p—r) rXpm
PXr px(p—r) 0 0 L6

(p=r)xr (p=r)x(p=r)] [(p—r)xp
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If we write X in the form

X

x=|Ki Ko rp
nxXr  px(n—r) Xo
(n—r)xp

then Z = XM can be simplified to
XL =1,
XoL1 =0,

with in addition, of course, X{X, +X;X, = I. It follows that X, = L/ and

Xo = % Ly
(n—r)xp  (n=r)x(p=r) (p—r)xp
with V'V = I. Thus X = K, L + K,V L, O

Corollary A.2.

o(*,A) =SSQ(Y)+SSQ(A) —2 f As(A'CA),

s=1

where the Ag are the square roots of the ordered eigenvalues of A'CA.
Proof. Directly from the Theorem. 0

Corollary [A.2] shows that the optimal factor loadings are continuous, and
usually differentiable, functions of the cross product matrix C, even if we
use data loss. This means that if the cross products are asymptotically nor-
mal, then so are the loadings estimates. Computing their asymptotic stan-

dard errors is tedious, but straightforward.

Theorem [A.1] shows that the factor scores are never unique if p > r, no
matter what the constraints on A are. In the FA literature this is known
as the “indeterminacy problem”, and it has often been discussed in rather

mysterious terms.
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APPENDIX B. THE FUNDAMENTAL THEOREM OF FACTOR ANALYSIS

There is a theorem closely related to theorem [A.T| which is known, or used
to be known, as the “fundamental theorem of factor analysis”. It took the
cumulative efforts of many fine minds, starting with Spearman, about 25
years to come up with a proof of this theorem. The fact that it follows easily
from the singular value decomposition shows the power of modern matrix
algebra tools. We use the same reasoning and notation as in appendix [A]

Theorem B.1. Suppose Y and A are such that X'X = AA’. Then there

nxm mxp

isan X suchthatX'X =IandY = XA'.

nxp

Proof. From Y'Y = AA” we know that A has singular value decomposition

A 0 Vi
A= | L1 Ly rxr rx(p—r) rxp
mXr  mx(m—r) 0 0 V(; ?
(m=r)xr (m=r)x(p=r)| L(p—r)xp

where r < p is the rank of both ¥ and A. Observe that the left singular
vectors of A are the right singular vectors of Y.

Now we still have to solve Y = XA’. Write

X

x=|Ki Ko rxp
nxXr  px(n—r) Xo

(n=r)xp
Then Y = XA’ simplifies to

=XV,
0= XoVi,
with in addition, of course, X{X, + XX, = I. It follows that X, = V| and

XO = w V(; y
(n—r)xp  (n=r)x(p=r) (p—r)xp

with W'W = I. Thus X = K, V| + K,WV,, O



ORTHOGONAL AND INDEPENDENT COMPONENT ANALYSIS 9
REFERENCES

P. Comon and C. Jutten, editors. Handbook of Blind Source Separation.
Academic Press, Amsterdam, The Netherlands, 2010.

J. De Leeuw. Least Squares Optimal Scaling of Partially Observed Lin-
ear Systems. In K. van Montfort, J. Oud, and A. Satorra, editors, Re-
cent Developments on Structural Equation Models, chapter 7. Kluwer
Academic Publishers, Dordrecht, Netherlands, 2004. URL http://
preprints.stat.ucla.edu/360/1lserr.pdf.

A. Hyvirinen, J. Karhunen, and E. Oja. Independent Component Analysis.
John Wiley & Sons Inc., New York, N.Y., 2001.

A.J. Swain. A Class of Factor Analysis Estimation Procedures with Com-
mon Asymptotic Sampling Properties.  Psychometrika, 40:315-335,
1975.

S. Unkel and N.T. Trendafilov. A Majorization Algorithm for Simultaneous
Parameter Estimation in Robust Exploratory Factor Analysis. Computa-
tional Statistics and Data Analysis, 2010.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-
1554
E-mail address, Jan de Leeuw: deleeuw@stat .ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu


http://preprints.stat.ucla.edu/360/lserr.pdf
http://preprints.stat.ucla.edu/360/lserr.pdf

	1. LS Approximation in the Linear Case
	1.1. Linear PCA
	1.2. Linear FA
	1.3. General
	1.4. Extensions

	2. Independent Component Analysis
	3. Polynomial Component Analysis
	Appendix A. Linear Factor Analysis
	Appendix B. The Fundamental Theorem of Factor Analysis
	References

