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Abstract

Multiple Correspondence Analysis (MCA) is discussed as a form of
Nonlinear Principal Component Analysis (NLPCA).

It is compared with other forms of NLPCA that have been proposed over
the years: Shepard-Kruskal- Breiman-Friedman-Gifi PCA with optimal
scaling, aspect analysis of correlations, Guttman’s MSA, Logit and
Probit PCA of binary data, and Logistic Homogeneity Analysis.
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Linear PCA
History

(Linear) Principal Components Analysis (PCA) is sometimes attributed
to Hotelling (1933), but that is surely incorrect.

The equations for the principal axes of quadratic forms and surfaces, in
various forms, were known from classical analytic geometry.

There are some modest beginnings in Galton’s Natural Inheritance of
1889, where the principal axes are connected for the first time with the
“correlation ellipsoid".

There is a full-fledged (although tedious) discussion of the technique in
Pearson (1901), and there is a complete application (7 physical traits of
3000 criminals) in MacDonell (1902), by a Pearson co-worker.

There is proper attribution in: Burt, C., Alternative Methods of Factor
Analysis and their Relations to Pearson’s Method of “Principle Axes”, Br.
J. Psych., Stat. Sec., 2 (1949), pp. 98-121.
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Linear PCA
How To

Hotelling’s introduction of PCA follows the now familiar route of making
successive orthogonal linear combinations with maximum variance. He
does this by using Von Mises (Power) iterations, discussed in 1929 by
Von Mises and Pollaczek-Geiringer.

Pearson, following Galton, used the correlation ellipsoid throughout.
This seems to me the more basic approach.

He cast the problem in terms of finding low-dimensional subspaces
(lines and planes) of best (least squares) fit to a cloud of points, and
connects the solution to the principal axes of the correlation ellipsoid.

In modern notation, this means minimizing SSQ(Y −XB′) over n× r
matrices X and m× r matrices B. For r = 1 this is the best line, etc.
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Correspondence Analysis
History

Simple Correspondence Analysis (CA) of a bivariate frequency table
was first discussed, in fairly rudimentary form, by Pearson (1905), by
looking at transformations linearizing regressions. See De Leeuw, On
the Prehistory of Correspondence Analysis, Statistica Neerlandica, 37,
1983, 161–164.

This was taken up by Hirshfeld (Hartley) in 1935, where the technique
was presented in a fairly complete form (to maximize correlation and
decompose contingency). This approach was later adopted by
Gebelein, and by Renyi and his students in their study of maximal
correlation.

Jan de Leeuw

NLPCA History UCLA Department of Statistics



Correspondence Analysis
History

In the 1938 edition of Statistical Methods for Research Workers Fisher
scores a categorical variable to maximize a ratio of variances (quadratic
forms). This is not quite CA, because it is presented in an (asymmetric)
regression context.

Symmetric CA and the reciprocal averaging algorithm are discussed,
however, in Fisher (1940) and applied by his co-worker Maung
(1941a,b).

Then in the early sixties the chi-square distance based form of CA,
relating CA to metric multidimensional scaling (MDS), with an emphasis
on geometry and plotting, was introduced by Benzécri (thesis of Cordier,
1965).
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Multiple Correspondence Analysis
History

Different weighting schemes to combine quantitative variables to an
index that optimizes some variance-based discrimination or
homogeneity criterion were proposed in the late thirties by Horst (1936),
by Edgerton and Kolbe (1936), and by Wilks (1938).

The same idea was applied to quantitative variables in a seminal paper
by Guttman (1941), that presents, for the first time, the equations
defining Multiple Correspondence Analysis (MCA).

The equations are presented in the form of a row-eigen (scores), a
column-eigen (weights), and a singular value (joint) problem.

The paper introduces the “codage disjonctif complet”, the “Tableau de
Burt”, and points out the connections with the chi-square metric.

There is no geometry, and the emphasis is on constructing a single
scale. In fact Guttman warns against extracting and using additional
eigen-pairs.
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Multiple Correspondence Analysis
Further History

In Guttman (1946) scale or index construction was extended to paired
comparisons and ranks. In Guttman (1950) it was extended to scalable
binary items.

In the fifties and sixties Hayashi introduced the quantification techniques
of Guttman in Japan, where they were widely disseminated through the
work of Nishisato. Extensions and variations were added

Starting in 1968, MCA was studied as a simple form of metric MDS by
De Leeuw.

Although the equations defining MCA were the same as those defining
PCA, the relationship between the two remained problematic.

These problems are compounded by “horse shoes” or the “effect
Guttman”, i.e. artificial curvilinear relationships between successive
dimensions (eigenvectors).

Jan de Leeuw

NLPCA History UCLA Department of Statistics



Nonlinear PCA
What ?

PCA can be made non-linear in various ways.
1 First, we could seek indices which discriminate maximally and are

non-linear combinations of variables. This generalizes the weighting
approach (Hotelling).

2 Second, we could find nonlinear combinations of components that are
close to the observed variables. This generalizes the reduced rank
approach (Pearson).

3 Third, we could look for transformations of the variables that optimize
the linear PCA fit. This is known (term of Darrell Bock) as the optimal
scaling (OS) approach.
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Nonlinear PCA
Forms

The first approach has not been studied much, although there are some
relations with Item Response Theory.

The second approach is currently popular in Computer Science, as
“nonlinear dimension reduction”. I am currently working on a polynomial
version, but there is not unified theory, and the papers are usually of the
“‘well, we could also do this” type familiar from cluster analysis.

The third approach preserves many of the properties of linear PCA and
can be connected with MCA as well. We shall follow its history and
discuss the main results.
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Nonlinear PCA
PCA with OS

Guttman observed in 1959 that if we require that the regression between
monotonically transformed variables are linear, then the transformations
are uniquely defined. In general, however, we need approximations.

The loss function for PCA-OS is SSQ(Y −XB′), as before, but now we
minimize over components X , loadings B, and transformations Y .

Transformations are defined column-wise (over variables) and belong to
some restricted class (monotone, step, polynomial, spline).

Algorithms often are of the alternating least squares type, where optimal
transformation and low-rank matrix approximation are alternated until
convergence.
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PCA-OS
History of programs

Shepard and Kruskal used the monotone regression machinery of
non-metric MDS to construct the first PCA-OS programs around 1962.
The paper describing the technique was not published until 1975.

Around 1970 versions of PCA-OS (sometimes based on Guttman’s rank
image principle) were developed by Lingoes and Roskam.

In 1973 De Leeuw, Young, and Takane started the ALSOS project, with
resulted in PRINCIPALS (published in 1978), and PRINQUAL in SAS.

In 1980 De Leeuw (with Heiser, Meulman, Van Rijckevorsel, and many
others) started the Gifi project, which resulted in PRINCALS, in SPSS
CATPCA, and in the R package homals by De Leeuw and Mair (2009).

In 1983 Winsberg and Ramsay published a PCA-OS version using
monotone spline transformations.

In 1987 Koyak, using the ACE smoothing methodology of Breiman and
Friedman (1985), introduced mdrace.
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PCA/MCA
The Gifi Project
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