

NON-MAJORIZATION OF PIECEWISE LINEAR FUNCTIONS

JAN DE LEEUW

ABSTRACT. A function $g : \mathbb{R}^n \Rightarrow \mathbb{R}$ majorizes a function $f : \mathbb{R}^n \Rightarrow \mathbb{R}$ at a point $y \in \mathbb{R}^n$ if g(y) = f(y) and $g(x) \ge f(x)$ for all $x \in \mathbb{R}^n$. In optimization we are especially interested in quadratic majorizers [De Leeuw and Lange, 2009]. It is of some importance that the absolute value function has no quadratic majorizer at the origin. In this note we generalize this result.

1. Result

Suppose $f(x) = \max_{i=1}^{n} p'_i x + q_i$, where all p_i are different. Define the index set $I(x) = \{i \mid f(x) = p_i x + q_i\}.$

Theorem 1. If I(y) has two or more elements, then there is no quadratic majorizer of f at y.

Proof. Define $g(x) = \frac{1}{2}x'Ax + b'x + c$ and h(x) = g(x) - f(x). Then g is a majorizer of f at y if and only if h has a global minimum at y equal to zero. This implies that h has a local minimum at y, which implies that the directional derivative h'(y,d) of h in y is non-negative in all directions d. But

$$h'(y,d) = \min_{i \in I(y)} d'(Ax + (b-p_i)),$$

and $h'(y,d) \ge 0$ if and only if $d'(Ax + (b - p_i) \ge 0$ for all *d* and for all $i \in I(y)$. If $i \ne k$ are in I(y) then we must have both $Ax + (b - p_i) = 0$ and

Date: Monday 3rd December, 2012 — 21h 14min — Typeset in TIMES ROMAN. *Key words and phrases.* Majorization, Optimization.

JAN DE LEEUW

 $Ax + (b - p_k) = 0$, which implies $p_i = p_k$, contrary to our assumption that all p_i are different.

References

J. De Leeuw and K. Lange. Sharp Quadratic Majorization in One Dimension. *Computational Statistics and Data Analysis*, 53:2471–2484, 2009.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu