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Summary:

This paper has two distinct parts. In the first part we prove
some of the more important duality and characterization theorems
for possibly nonconvex, possibly normalized cone regression
problems. Its purpose is to show:that this can be done by using
only elementary tools, and that some of the results at least can
be derived without using convexity. In the second part of the
paper we use the results from the first part to prove a number
of convergence theorems for alternating least squares algorithms.
Again we are careful not to assume convexity when it is not

strictly needed.
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®: Introduction

One of the essential ingredients of the nonmetric data analysis
methods proposed by Kruskal (1964) is the monotone regression

algorithm MFIT, The problem solved by MFIT can be described as
follows. Suppose X is an n-dimensional real linear space, with
inner product <x,y> and with norm ||x|| = <x,x>%. Suppose C is
the closed polyhedral convex cone of all vectors y satisfying

the monotonicity restrictions ¥, £y, & oo & Yo The problem

is to find the vector % that minimizes | x - y|| over all y in

C. For a thorough discussion of this problem, the methods for

solving it, statistical applications, we refer to the books of
Barlow, Bartholomew, Bremner, and Brunk (1972), Van Eeden (1958),
and to the review article of Barlow and Brunk (1972). Several
generalizations are also discussed in these references. In fact
most of the theory and most of the algorithms remain valid if

we generalize the monotonicity conditions by replacing the weak
order by an arbitrary partial order, and if we replace the

inner product norm by an arbitrary separable convex norm.

Although these generalizations are certainly useful for nonmetric
scaling, they sometimes do not go far enough. For various problems
in scaling the constraint set in which y varies is not convex.
Moreover we sometimes want to minimize the normalized distance
function ||x = y|| / |lyl|, in stead of the usual unnormalized
ones. In this paper we give some theoretical results on the
problem of minimizing possibly normalized distance functions over
possibly nonconvex cones. Because we do not use coordinates the

results are valid in all Hilbert spaces..

1: Unnormalized problem

We first consider the problem P1 of minimizing the distance

between a point x and the points of a possibly nonconvex closed

cone C.
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rL:at LT X solves P1 and y is such that & + ey is in C for all
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e < Eo’ then <x,y> g <x,y>.
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If % solves P1 and y is such that & + ey is in C for all

e < e £ 0, then <x,y> 2 <x,y>.
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% solves P1 and y is such that &% + ey is in C for all

+
€ < € , then <x,y> = <},y>.

m
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Proof: If % solves P1 and & + €y is in C, then clearly

||x - &|| € ||x = (& + ey)||. If we square both sides and collect
terms we find that e?<y,y> - 2e<y,x - %> 2 0 for all € such that
% + ey in C. By letting € approach zero through positive values
we find Tl:a, by letting € approach zero through negagive values
we find T1:b, and Tl:c follows from the combination of the two.
Q.E.D.

T2: If % solves Pl, then <x,%> = <¥,%>,

~

Proof: Take y = % in Tl, then & + ey = (1 + €)%, which is in C

for all € 2 -1. Thus T2:c applies. Q.E.D.

Observe that we have not proved that a solution to P_ actually

1
exists. This will follow from the analysis of a closely related
problem Ql' Suppose S is the unit sphere in X, i.e. the set of

all y such that ||y|| = 1. Problem Q1 is the maximization of

<x,y> over y in C @ S.

T3: 1f % solves P, then R / |1%]| solves Q. If % solves Q, then
£X,X>X solves Pl'
Proof: Define v(y) as the minimum of ||x - ay|| over a > o.
Minimizing ||x - y|| over C is equivalent to minimizing v(y)
over CMN S, and then adjust the length. But for y in CM S we
have

<X, X> if <x,y> £ 0,
Vz(y) =

<X,X> - <xX,y>2 if <x,y> 3 0.

=
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This minimum value is attained for

0 if <x,y> £ 0,

<X,y> if <x,y> 2 0.

The result follows from this. Q.E.D.

Because Q1 is the maximization of a linear function over a compact
set, it follows that the maximum in Ql’ and consequently the minimum

in P1 is attained.

2: Unnormalized convex problem

We now specify, in this section only, that the cone C is convex,
but not necessarily polyhedral. The results here are classical.

0f course the theorems from the previous section remain valid in
this more special case. The regression problem for a convex cone
C will be called problem P2.

T4: % solves P, if and only if <x,&> = <%,%>, and <x,y> $ <},y>

2
for all y in C.

Proof: The necessity of both conditions follows from Tl:a and T2.

Sufficiency follows from the expansion

|[x - y|]?

|G = 8) 4 (& = )] | % #

[1x - &[[2 + ||& - y[[2 + 2<x - 2,2 - y>.

The last two terms are both nonnegative. This is obvious for
!]i - yllz. For the second term we observe

<X = R, & - y> = =<x = R,y> = <y,%> - <y,x> 2 0.

Thus ||x = y|]|2 2 ||x - &||2? for all y in C. Q.E.D.

T5: The solution of P2 is unique.

Proof: Suppose both %  and %, satisfy the conditions of T4. Then

1 2
<§1,i1> ~ <x,§1> < <i1,i2>,
<?2.X2> = <X,ﬁz> < <i1,x2>.
The Cauchy-Schwartz inequality now implies that %X, and X,  are

1 2

proportional. Thus 22 = sil. From the first condition of Té4



KyX,> T BKX > = <K,R > = B‘<i1,i1>,

and thus B is either one or zero. If B is zero, then <y,x> £ 0

for all vy in C, and X %, = 0 is the unique solution of P_ . If

1 2 2
B is one, then also il = iz. Q.E.D:
We also define a problem QZ. Suppose c® is the polar of C, i.e.

the set of all z such that <z,y> £ 0 for all y in C. Problem Q2

o _— . " o
is the maximization of <x,z> over z in C N s.

T6: If & solves P, then 2 = (x - %) / ||x - &|| solves Q,-

2
Proof: T4 says that x - % is in C*. Thus 2 is feasible for Q,,
and the optimum value 7 of Q2 satisfies m > <x,2> = ||x - ill.
On the other hand if z is in c® then <z,%> £ 0, and thus

<z,x - %> > <z,x>. 1f z is in S then ||x - %|| 2 <z,x - ®>.
Thus ||x - %|| 2 <z,x> for all z in c®N s, and ||x - || > =
It follows that I]x - i|| is the optimal value of Q2, and

that 2z solves Q2. Q.E.D. ﬁ

We now define problem P, as the minimization of |[x - z|| over

3

. o)
zin C .

I7: If % solves P2 then x - % solves P3. If Z solves P3 then

X - Z solves P2. i
]

Proof: The first part follows from T6 and the second part of T3.

The second part follows by symmetry. Q.E.D. i

T8: If C is a closed convex cone and c® is its polar, then any

vector x can be decomposed as x = x, + Xy with x. in C,

1 1

,X.> = 0. This decomposition is unique.

X, in Co, and <x1 ?

2

Proof: Take X, = %, the solution of PZ’ and X, = %, the solution

of P3. We only have to prove that this solution for the decomposition

is the only one. Suppose x = uy + u, is another such decomposition.

,r.>..0n the other hand

> and <r_,x> = <r 1

Then <x, ,x> = <x1,x1 1 1

1

<xl,x> = &X. 52, . 2> & <x1,r

= < < >
125, o> S > and <r1,x> TysXy ol Pl S rl,x1 i

2
€
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As in T5 the Cauchy-Schwartz inequality now implies that x_ is

1
proportional to - In the same way X, is proportional to T, As
in T5 we can use the relations <x1,x> = <x1,x1> and <r1,x> = <r1,r1>
to prove that actually x, = r,- In the same way X, is e Q.E.D.

The theorems given for the case of a convex cone are very well
known. We have presented them for completeness, but also because
usually much more sophisticated proofs are given, based on convex
analysis in normed linear spaces. Some of the more important
references are Deutsch and Maserick (1967), Ioffe and Tikhomirov
(1968), and Ubhaya (1974). An extremely elegant finite dimensional
theory is developed in Rockafellar's book (1970, especially

31.4 and 31.5). Theorem TS5 is due to Moreau (1962), a beautiful

discussion of many closely related results is Moreau (1965).

3: Normalized problem

We now discuss the normalized problem P, of minimizing the

4

normalized distance ||x - y|| 7 |‘y|| over y in a possibly
nonconvex cone C. For convenience we also define the problem

Pi, in which we have to minimize le - y|| / ||x|| over y in

C. Of course P!

1 We also need

is trivially equivalent to Pl'

problem Ql’ defined in section 1.
T9: If % sol hen & = =X % golves P,. If & solves P
—>T9: X solves Ql’ then & = e T X solves P . X s 4
then % = & / ||%&|]| solves Q-
X = O
al |y
Again the minimum of the normalized distance function over C

Proof: We define w(y) as the minimum of over a 2 0.
equals the minimum of w(y) over C A S, and the minima are attained
for the same direction. For y in C f\ S we have

1 if <x,y> £ 0,
wi(y) =

<x,x> - <x,y>2
<Xx,Xx>

if <x,y> 2 0,



e — e~

and the minimum is attained for

& if <x,y> £ 0,
a =

<X,X> .

s if <x,y> > 0.

<x,y>

Again this proves the result. Q.E.D.

We can combine the results of T3 and T9 into a single result. The

solution of the problems P, (or Pi), Q> and P, are proportional.

1
The constants of proportionality are given in our theorems. The

optimal values of Pi and P4 are the same. Normalized cone regression

problems can be solved by solving unnormalized problems, and by

renormalizing the solution afterwards. The link between the

normalized and the unnormalized ﬁroblem is the problem Ql’ or,

equivalently, separating the problem of finding the optimal

direction from that of finding the optimal length. Because we

have not used convexity in this section, there is no need for a oY
separate section on normalized convex problems. The basic result
of this section has been proved previously by Kruskal and Carroll

(1969). Their arguments were essentially the same, but with more

emphasis on the geometry of the problem.

4: Convergence of ALS algorithms

Recently algorithms based on so-called alternating least squares
(ALS) methodology have become quite popular in data analysis

(De Leeuw, Young, Takane, 1976; Young, De Leeuw, Takane, 1976;
Takane, Young, De Leeuw, 1977). In ALS problems we have to
minimize normalized loss functions of the form |[x = y|| / [yl
or ||x - y|| / ||x|| over x in a possibly nonconvex cone C,

and over v in a possibly nonconvex cone CZ' The ALS algorithm
starts with x_ in C

0 B

| over y in C,, then defines x, as a minimizer of

then defines Yo @ @ minimizer of

NEN

‘lx - yolt over x in C_, and so on. This defines sequences

1



. T and Ygo¥psee with X in C1 and V. in 02 for all n.

02 X120

There is no explicit proof of convergence in de De Leeuw,
Young, Takane papers, nor is it made exactly clear in which
sense the ALS methods converge, if they converge at alls;

There are some results in section 3 of De Leeuw, Young, Takane
(1976), especially page 485-489, but the results are sketchy
and consist mainly of references to the mathematical programming
literature. An elegant convergence theorem for alternating
least squares approaches to the additive model (ADDALS) has
been given by Lemaire (1976), but his result is not quite
general enough for our purposes, and he does not give a
detailed proof. We intend to provide some of the relevant
results in this section, using results from our previous
sections, and taking care to specify where convexity of the

cones C1 and C2 is needed, and where not.

It is convenient to introduce some special notation and
terminology first. We will use a bar under a symbol that
denotes a vector to indicate normalization. Thus x = x / [1=l]-
We write 8(x,y) for le - yll in the sequel, and we also
define y(x,y) = <x,y>. The ALS algorithm defines sequences

{xn} in C

1 and {yn} in CZ’ but also {gn} in le\ S and {zn} in

C_M S. Moreover there are the sequences {8 _} with §_ = 8(x ,y ),
2 n n n’’n
and {yn} with : M Y(xn,yn). It follows from the results in
section 3 of this paper that we can minimize the normalized loss
function by maximizing y(x,y) over x in C1 and y in C,» which is
of course equivalent to maximizing <x,y> over X in Cll\ S and

y in 02(1 S. In most cases looking for the global maximum of
v(x,y) is not very realistic. To get a workable algorithm we

have to broaden the class of desirable points (or targets).

A pair (%,9) is strongly desirable if % maximizes <x,§> over

X in Cll\ S and § maximizes <R,y> over y in CZI\ S. We shall



T also call a pair (%,§) weakly desirable if % minimizes O(X,y)

over x in C1 and § minimizes 8(&,y) over x in CZ' It follows
from T3 that if (%,9) is weakly desirable, if % #0and § #0,
then (&,§) is strongly desirable. We shall call (xn+1’yn+1) the
successor of (xn,yn), and we shall call (§n+1,zn+1) the successor
of (x ,xn). Our first theorem deals with convergence of some

—n
of the sequences of real numbers generated by the algorithm. It

does not use convexity.

10: There exist ¢ > 0 and -1 § y_ £ +1 such that ||x || Y e,
—_— ) -} n ©
llynll Vg Vo + v, and Sn + 0. Moreover if € _ > 0, then

Yy =1.

©

Proof: Convergence of Yo follows from the fact that we increase
v(x,y) two times in each ALS iteration, and from the fact that
v(x,y) is bounded. (We assume the algorithm generates an infinite
sequance of different intermediate solutioms, if it should ever

repeate itself we can stop, the point is then both weakly and

strongly desirable). From T2 it follows that <x .y > = ||yn||2,
which implies, by Cauchy-Schwartz, |lyn|| < ||xn||. In the same
way <X .Y > = len+1||2’ which implies ||xn+1|| g llynll, and

thus ||xn|| and ||yn|| converge to the same limit. Now the
dentity 82 = ||x |12 + |y |12 = 29 y> = I [12 = Ty ]2
implies that Gn + 0. And the identity | ||Yn|| / lenll

implies that Y, + 1 1if . 2 0. Q.E.D.

The next two theorems are proved by the standard closedness-

compactness methods (zangwill, 1969). They do not use convexity.

11: If (x_,y ) is an accumulation point of {(xn,yn)}, then

x =y, is in le\ CZ'
Proof: Suppose the subsequence {(xn,yn)}neN converges to (x_,¥.).
Then {xn}nEN converges to x , and {yn}neN converges to y_, with

X, in C) and y_ in C,. For each n in N it is true that 6(xn,yn) S



G(Xn,y) for all y in C,, and thus by continuity 8(x_,y.) € §(x_,y)
for all y in C2' This means that y_ minimizes G(xm,y) over all y in
CZ’ and thus <x_,y> = Ilywllzby T2. From Cauchy-Schwartz

||ym‘| < ||xm||, with equality if and only if y is proportional to
x . But |lywl| = llx@l\ =e_by continuity  of the norm, and thus

Vo = X ° Q.E.D.

The usual case in data analysis is that Cll\ 02 = {0} , i.e. there

is no non-trivial perfect solution. In this case T1l implies that

both x > 0 and +> 0. This is a satisfactory convergence result,
but it is very disappointing from a practical point of view. Thus

we now turn to the sequences {x } and {zn} ;
“n

12: If (§¢>Zm) is an accumulation point of {(En,xn)}, then

(x,,¥,) is strongly desirable.
Proof: As in the proof of Tll we start with a subsequence
{(En'zn)}neN converging to (x_,y,). We then form {(§n+1’xn+1)}neN’
i and select from-this sequence a subsequence {(§n+1’zn+1)}neM’
converging, say, to (§w+1,zm+1). 0f course the corresponding
sequence {(gc_n,xn)}neM still converges to (x_,y ). Now Y(§n+1’zn+1) 2
Y(§n+1,y) for all y in Czl\ S, which implies Y(§w+1,zw+1) >
Y(§“+1,y) for all y in C2(\ S. In the same way Y(5n+1’zn) 2
i Y(x,zn) for all x in le\ S, which implies Y(5w+1.xm) 2 v(x,y)
l for all x in le\ S. Thus (5m+1,xm+1) is the successor of (x_,y ).
But by continuity Y(zw,xm) = Y(§w+1,zm+1), and thus (zw,xw) is

strongly desirable. Q.E.D.

It is difficult to prove stronger and more specific convergence
! theorems without making special assumptions. For the following
theorem we do not assume convexity right away, although the

hypotheses of the theorem are implied by convexity of C1 and CZ'

T13: Suppose that for every accumulation point (gmgxw) of the sequence

{(zn,zn)} generated by the algorithm it is true that X is the




unique maximizer of Y(x,xw) over x in le\ S, and y_ is

the unique maximizer of y(x_,y) over y in sz\ S. Then

llx - x Il >0amd ||y -y, I[l~o0.
Proof: As in the proof of the previous theorem we find subsequences
{(En’xn)}nsu converging to (x_,y ) and {(5n+1’zn+1)}neM converging

to (x

_w+1,zm+1). From the proof of the previous theorem (5w+1,xw+1)

is the successor of (x_,y ), and (x,,y,) is strongly desirable. Thus

from the uniqueness assumption (x_,y ) = (5@+1,zm+1). Q.E.D.

Result T13 does not imply that {En} or {zJ’converges. Again we
need additional assumptions to prove convergence. By a familiar
result of Ostrowski (1966, chapter 28) the convergence result

in T13 implies that eithetHKEn,znﬂ-converges, or the limit set

of the sequence is a continuum. Thus we only have to assume that
the number of strongly desirable points with a given function
value is at most countable, or that there is at least one isolated
accumulation point, to obtain convergence. Only in pathological
cases something can go wrong. The next result shows that at least
some forms of pathological behaviour are excluded by convexity.
Define C = Cl N C2~ A double bar under a vector denotes projection

on C, i.e. y minimizes 8(x,y) over x in C. Moreover 8(y,0) = 8(y,p)-

14: If both C. and C, are convex then both {xn} and {yn} converge

1
to a point of C.

Proof: We adapt a proof given by Gubin, Polyak, and Raik (1967) to

our case. Take z in C arbitrary. By T4 we have <z,x -~ %> < 0 and

<Z3¥., = X 41> € 0. This implies <Z,X > € <z,y > § <Z,X 1> But

||xn|| > l[yn!l > ||xn+1|‘ by T10, and thus 5(z,xn) > s(z,yn) >

6(z,xn+1). 1t follows that s(z,xn) and G(Z,yn) decrease to a common

1imit. This is part A of the proof.

By the result of part A, and by the definition of X and Lo

[ 2-
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G(xn,;gn) > G(yn,;n) > G(yn,x,n) > G(xnﬂ,gn) > G(xn+1,§,n+1)

which implies that also G(xn,g) and 6(yn,;D decrease to a common

limit. Now suppose (x_,y ) is an accumulation point of {(xn,yn)}.

In the same way as in the previous theorems there is a

b ;

subsequence {xn}nsN converging to x_, such that {_zgh}neN converges
. . o 3 2 =

to x_. But x_ is in C by T1l, and thus x_ = x_. Since $ (xn,g)

Hxnll2 = ||§hl|2 this implies that 6(xn,§) converges to zero. In

the same way G(yn,g) converges to zero. This is part B of the

proof.

Now consider the spheres Sn, with center at X and with radius

6(xn,g). If m 2 n then, by part A, G(xm,éh) < 6(xn,§n) = 6(xn,g).
Thus X is in Sn’ and because the radius of Sn converges to zero
by part B, {xn} is a Cauchy sequence, and converges to some X_.

Again by part B x_ = x_ , and thus x_'is in C. Q.E.D.

The theorems proved in this section do not give a complete
picture of the convergence behaviour of ALS algorithms. However,
some results cannot be improved a great deal, as simple examples
show. If C1 and C2 have a nontrivial intersection, then {xn?

and {yg-may still converge to zero, while {En} and {zn} need not
converge to a point in the intersection at all. This is even true
in the convex case. If C1 and 02 are not convex, then {En} and
{xn} need not converge at all. Moreover there generally exists
more than one strongly desirable pair, even if C1 and C2 are
convex (thus there are 'local minima'). It is possible, however,
that better results can be derived by imposing conditions

stronger than convexity on the cones (for example: they must

be polyhedral, they must be strongly convex, they must not have

parallel faces, etc.) It seems highly unlikely, however, that




results can be proved which are as precise and as general as
those for pairs of (separable) closed convex sets, with an

unnormalized distance function (cf for example Gubin, Polyak,

Raik, 1967).

14~
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