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Principal Component Analysis of Markov Chains

.

Suppose x, is a Markov Chain on (0,T), with k states, and stationary

t
transition probabilities. Suppose 0 < t1 < .. < tm < T, and consider the
random vector (51”“’5m)’ where X5 1s short for étj.

The cross table of variables X5 and x,, with j < &, is le = Dijz, with

Dj the marginals of 5d'and with sz the transition matrix. Under regularity

conditions we know that

- . _m(tl-t.)ss
55 = exp((ty - £4)Q) = SZO —————-J-—S: Q

H

with Q the intensity matrix of the process. The eigen-equations of homogeneity
analysis are

m

P.ox = mD.x..
zzl P35 T ™P5%

Now suppose Y is a linear independent system of eigenvéctors of Q. Thus

QY = YQ, with g diagonal. Write xj in the form Yaj. Then

Pjgxz = szYa2 = Y exp((t2 - tj)ﬂ)“z’

and thus we must solve

hil

zzl exp((t, - tj)g)“z = Ma,.

This eigenproblem has all submatrices of the Burt-table diagonal. By rearranging,

as in De Leeuw (COMPSTAT, 1982), this problem can also be written as
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the eigenproblem for the direct sum Ry }oo.o4 R,» where the R; are m x m

.

matrices with elements
(Ri)jz = exP((tg - tj)mi)-
If the tj are equally spaced, this'can be written as

(Ri)yy = egl-a).

In any case it is clear that simultaneous diagonalization of the sub-tables

of the Burt-table, as explained in Be Leeuw (COMPSTAT, 1982, Journal of
Econometrics, 1983), is possible in this case. This adds a very important

model to this list of models for which we can diagonalize simultaneously.

We can solve the eigenproblem by solving the k eigenproblem for the Ri
separately. The xj are all proportional to one of the columns of Y, say Yi» with
proportionality factors given by the eigenvector of the corresponding Ri'

Thus each of the k columns of y defines m solutions to the original eigenproblem,

giving the required total of mk solutions.

In stead of approximating the process by studying at m points, we can also
approximate it by averaging over intervals (De Leeuw, Quantitative Harmonic

Analysis). This gives basically the same result, but with

S
(Ri)jp = o ” (t - u)® dtdu,

2

s=0

where t is integrated over (tj,t ) and u over (tz,t£+1).

j+1
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Additional

If D_ gives the asymptotic probabilities of the states of the Markov process,

then u'Dmxj = 0 for all eigen-subvectors X5 Thus if state k, for example,

is absorbing, then eéxj = (xj)k = 0 for all eigen-subvectors X

We have shown that the category quantifications at time t are of the

form xh(t) = a(t)yh. Here Yh is element h of eigenvector y of Q, and

a(t) is an eigenelement of the matrix with elements exp(A(s - t)). Thus
if the k curves xh(t) are plotted against time they all have the same
shape, in the sense that they are all multiples of «(t). They have maxima
and minima at the same places, they are monotone in the same intervals,

and they never cross, except possibly when they are both zero.

The function a(t) can be described more precisely by using the theory
of total positivity (Gantmacher/Krein, or Karlin). We can show how
it oscillates, and how many zero-crossing it has. This will be done
elsewhere. For the moment is suffices to assert that we can recognize

stationary Markov Chains from their PCA's.
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Ordering within and between variables

1: Introduction

In the Gifi system order relations are defined within variables. Thus
we study variables whose range is ordered, who take values in an ordered
set. This information can or cannot be incorporated into the analysis.

It is of interest to consider the case in which there is an order

between variables, i.e. in which we know that variable j precedes

variable 2 in some well-defined sense. This happens, of course, with

time series and event history data. But it can also happen with

patterns of the Guttman, Thurstone, or Rasch variety. We give a simple
(essentially one-dimensional) introduction. Extensions to multidimensional
quantification are possible along the usual Gifi-lines. Part of this work
has been inspired by the thesis of Besse (1979). For reasons of simplicity
we restrict ourselves to the case of a finite number of variables in

a finite dimensional space.
2: Loss

The loss is, as usual, defined in the following way. If the Gj are
indicator matrices of variables 1,...,m (or other bases for the quantificatior
spaces), then the quantified variables are the columns of Q, with column
qj given by qj = Gjyj. Here yj is the k-vector of weights (or category
quantifications). Homogeneity is defined as 9 = ... = Q. If the qj are
interpreted as real valued functions on {1,2,...,n}, then homogeneity means

that they must be the same function. But obviously the rows q; of Q can

also be interpreted as n functions on {1,2,...,m}. In this interpretation
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homogeneity means that the q; are constant real valued functions, having

the same value for all j.

Gifi-loss is, essentially,

O(X;yl,...,ym) =

j (x 'Gjyj) (x-GJ-yJ.).

It~
et

Here x is the comparison function, also defined on {1,2,...,n}, also known

as the object scores. Thus we compare functions on In in order to define

loss. But of course we can write equally well

o~13

o(x;yl,...,ym) = 4 (xiu - qi)'(xiu - qi){

Here X;u is the function on Im = {1,2,...,m} with is equal to X for all j
in Im.

In this alternative interpretation of the Gifi-loss (of course all
these formulations are variations on the basic duality) we use the yj
to induce functions 9; in Im. They are homogeneous if they are
constant functions. But this immediately suggests alternative definitions
of homogeneity. Maybe we should call the q; homogeneous if they are
all straight lines, or low-degree polynomials, or low-degree splines
on a given scale. All these definitions can be incorporated quite

simply be using a basis H for the comparison functions, and by letting

).

n
O(XpseeesX iy aeeeny,) = izl (Hx; = Q) "(Hx; - q;
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3: Matrices

The Gj are n x k, and His m x r. The Xi can be collected in an
n x r mtrix. Then

SY) = tr (XK' - Q)'(XH' - Q) = T (Xhy - Gyyy)"(¥hy - Gvy).

3

Observe that H is known, and the matrix X is unknown. This makes the
problem different from a canonical analysis problem, which has the
same form but with X known and hj unknown.

4: Algorithm

This is not spectacular. We know that the optimal yj is simply

. -1
. =D."GiXh,. T
(usual notation) Y; DJ GJ hJ hus
m -
%) = mi 3Y) = X'P.Xh.,
o (X ;%) m}n a(X;Y) jzl hJX PJ 3
. With P5 =1 - Pj =1 - GjDEIGj. If we use the normalization condition

m
jzl th th =1,

then we must solve the eigenproblem Ax = ABx, with x a concatenation of

the n rows of X, with (using direct or Kronecker products)

>
n

m
/¥ . .h!
jzl PJ X (thJ),

" .
B = jzl I x (hjhj),

Because A and B can be quite big (they are of order nr), it may be best
to use alternating least squares. The optimal X for given Y is proportional

to QH(H'H)™L.
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5: Dual eigenproblem

Minimizing o(X;Y) over X for fixed Y gives

a(*:;Y) = tr Q'3Q,
where $=1-S=1 - H(H'H)'IH'. By imposing tr Q'Q = I this leads to
the eigenvalue problem
Ey = ADy,
where C and D are the Burt table and its diagonal, as usual, and where
n

C.

ny
C has submatrices le = sz jo*

6: Earlier proposal

In qualitative harmonic analysis (previous note in same series, page
A3) we proposed to restrict the yj directly by requiring yj = Ahj. Here

A is k x r, and unknown, and the hj are known. This uses the classical

definition of homogeneity, but restricts the shapes of the curves.




