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Introduction

In the paper we look at the situation in which the relationship between two vector variables
z and y is mediated by a third vector variable z. What we have in mind is the following
diagram.

Figure 1: Filtered Regression

There are a couple of basic ideas incorporated in this figure. In the first place the arrows
have direction, and direction is interpreted loosely as causality. Thus z depends on z,
and y depends on z. Or: z causes z, and z causes y. The variables in z are ezogeneous
variables, predictors, or input variables (sometimes, unfortunately, also known as indepen-
dent variables), and the variables in y are endogeneous, outcome, or output variables (again
unfortunately sometimes known as dependent variables).

Another basic idea incorporated in Figure 1 is that z is unobserved (or latent). This is
why z is indicated with a circle, while z and y are squares. Variables in z are also known
as mediating variables, filters, state variables, hidden variables, constructs, or factors. We
are really interested in the dependence of z on z, but unfortunately we cannot observe
z directly. We only observe y, which contains error-contamined versions of z, observable
indicators for the theoretical construct z, or transformed, censored, truncated, selected,
categorized, ranked, incomplete, or otherwise mutilated versions of z. OQur hope, of course,
is that the dependence of z on z is “really” simple, but since we only observe the dependence
of y on z the situation “looks” complicated. The simple relationship £ — z is contaminated
by the transformation z — y, which can in itself also be simple, but which makes 2 =y
look complicated. Analysis into two subprocesses hopefully restores the basic simplicity.

The final basic idea is that given z we do not have any dependence of y on z any longer,
all dependence of y on  is filtered or channelled through z. There is no arrow which runs
directly from z to y. This means that indeed y is just an imperfect or mutilated version of
z. In as far as relationship with z is concerned, there is nothing in y that was not already in



z. We shall translated this basic idea into mathematics by using the notion of conditional
independence. [Dav79], [Whi90], [Pea88]. Thus our Figure 1 tells us that z and y are
conditionally independent given z, which we write as z L y

z



Some consequences of conditional independence

Throughout the paper we assume that z,y and z have finite means and variances. We
shall use the notion of conditional independence to decompose the conditional distribution
of y given z into the two supposedly simpler components describing dependence of z on z
and of y on z.

The two basic equations are

E(y|z)=E(E(y|2)]|), (1)
V(ylz)=E(V(y|2)[2)+V(E(y|2)]2) (2)

If the regression of y on z is linear, then
E(y|2)=E(y) + B(y | 2)(z - E(2)), (3)

where B(y | z) = C(y,2)V (2)7!, and thus

E(y|z)=E(y) +B(y | z)(E(z | z) - E(2)), (4)

With linear regression (2) becomes
V(yl2)=E(V(ylz)|2)+By|2)V(z|z)B(y|2). (5)
and with homoscedasticity, in which we have V (y | z) = Q independent of z, in addition

V(ylz)=2+B(y|2)V(z|z)B(y|2)" (6)

It is useful to emphasize, at this point, that the conditional independence assumption
is symmetric in £ and y. This means that all formulas in this section remain true if we
interchange z and y. We can actually argue from this that conditidional independence, in
itself, is not enough to model Figure 1. The direction of the arrows could as well be the
other way around, and thus additional structure is needed to give meaning to the particular
direction we have chosen. This will be discussed in more detail in later sections.



The Pearson-Aitkin-Lawley Selection Theorem

Suppose po(y, z) and pi(y, 2) are two probability density functions, which have different
marginals for z, but identical conditional densities for y given z. The idea is that we know
p1(y, 2), which is the density after selection, and we want to find out about po(y, 2), the
density before selection. The results below were discussed first, in the context of natural
selection theory, by Karl Pearson [Pe]. The clumsy determinant notation Pearson used
was replaced by matrix notation by Aitkin [Ai]. Lawley [La] relaxed the multivariate
normality assumptions used by Pearson and Aitkin to linearity of regressions. Birnbaum,
Paulsen, and Andrews [Bi] used Lawley’s theorem, in a somewhat modernized version, in
various psychometric applications. And, finally, Skinner [Sk] discussed a nice geometrical
interpretation of the selection theorem, and again gave psychometric applications.

The basic assumption means, in a somewhat different formulation, that there is a variable
z, which takes only the values 0 and 1, such that p(y | z A z) = p(y | ). But this means
that y and « are independent given z, and thus the results of the previous section apply.
In particular, in the unselected distribution,

Eo(y) = Eo(E(y | 2)), (7)
Vo(y) = Eo(V(y | 2)) + Vo(E(y | 2))- (8)

If the regression is linear, then these results simplify in the way illustrated in the previous
section. Thus we have formulas

The interesting thing is that the unknown parameters B (y | z) and 2 can be computed
from the selected population, in which the conditional density is the same as in the unse-
lected one. This leads to the following theorem, which we call the PAL theorem.

Theorem 1: In the Pearson-Aitkin-Lawley selection situation, explained above, linearity
of regression implies

Eo(y) = E1(y) + Bi(y | 2)[Eo(2) — E1(2)], (9)
If we assume, in addition, that there is homoscedasticity then
Vo(y) = Vi(y) + Bi(y | 2)[Vo(z) = V1(2)| Ba(y | 2)". (10)

Proof: Simple computation. Q.E.D.

Let us give a simple example. We have collected information about the distribution of
school achievement tests y in Los Angeles, and we want to know the distribution for the
whole country. One way to find out what this distribution is, is to collect information
for the whole country. This may be infeasible, and, as usual, in that case we have use
assumptions to make up for our lack of empirical information. In this case the assumption



is that we have also collected, in our Los Angeles sample, information on a number of
background variables z, such as ethnicity, gender, status, or age, and that p(y | z) is
the same in Los Angeles as in the rest of the country. If we have a sufficient number of
background variables, which we know are important in determining school results, then
this assumptions can be quite plausible. If the assumption is true then y and =, which takes
the values {LosAngeles,USA}, are independent given z, and the PAL theorem applies.

The theorem tells us we can infer mean and dispersion of our tests in the whole country
from that in Los Angeles, provided we also know Eq(z) and Vy(z), i.e. the mean and
dispersion of the background variables in the whole country. This information may be
available from other sources, such as the census. Of course we still have to assume linearity
and homoscedasticity in order to apply the theorem, but this assumption we can check in
the Los Angeles data. The critical assumption is conditional independence, and this can,
by definition, not be checked. This we have to believe. The usual trade-off also operates
here. If we take many covariates in z the assumption will become trivially true, but it can
no longer be used in any practical sense, because the conditional distribution cannot be
estimated any more. In the social sciences we need many covariates to be plausible, and
thus the stability of plausible results will be very poor. If we have only a few covariates
we can find stable results, but they will not be plausible.



Selection and Censoring

Now consider the following situation. We have a dependent variable y, which is a trans-
formed, or censored, version of a true but unobserved dependent variable z. Thus z depends
on z, and y depends on 2. The idea is that given z we do not have dependence of y on z
any longer, all dependence of y on z is filtered through z. Again this can be formalized by
using the notion of conditional independence, and by assuming y % z.

The same notion can also be formulated in a way which is closer to classical regression
models. Suppose y = ¢(z,€), where ¢ L z, i.e. € is independent of z. Then obviously
y|z Lz, and thus y L 2.

z



Selection and Rubin-ignorability
Linear Reduced Rank Regression

Suppose (z,y, z) is a triple of centered random vectors. We think of z as the predictors,
of y as the criterium, and of z as a vector of unobserved or latent variables, that mediate
the dependence of y on . We suppose z has dimension m, y has dimension n, and z
has dimension p < min(n,m). Throughout the paper we assume that both z and z are
nondegenerate, in the sense that they are not concentrated on lower-dimensional subspaces.
Thus the dispersions X, = V (z) and £,, = V (z) are nonsingular.

Reduced rank regression models assume that z and y are conditionally independent given
z. We write this as

zly. (1)

It implies that
E(y|z)=E(E(y|2)|2), (2a)
Vylz)=E(V(y|2)|z)+V(E(y]|2)]=). (20)

In addition, linearity of the regressions is often assumed. This is
E(y|z)=Uzand E(z | z) = B'z. (3)
As a next step we assume homoscedasticity, which is

V(y|z)=Qand V(z]z)=0. (4)

Theorem 1: If(2) and (3), then E(y | z) = UB'z. If also (4), then V (y | z) = Q+UOU'.

Proof: Simple computation. Q.E.D.

For likelihood inference joint normality of (z,y,z) is assumed, and a set of repeated in-
dependent trials (z;,y;) is available. Theorem 1 is used to set up the likelihood function,
and to estimate the parameters. A diagram illustrating the linear reduced rank regression
model is given in Figure 1.

Nonlinear Generalizations: SIR

If we want to generalize the basic structure in the previous section to nonlinear dependence
of y on = we can go in a number of directions. We must maintain conditional independence



(1), because it is the very essence of the model. We have to relax some of the linearity
and normality assumptions. In the first approach, due to Li [Lil] we make no assumptions
about the relationship between y and z. We strengthen E(z | ) = B'z to z = B'z, i.e.
in terms of (4) we assume V (z | ) = 0. Observe that (2a) and z = B’z taken together
imply that E(y | ) = g(B'z) for some real g. The work of Li shows that it is possible
to estimate B without actually specifying or estimating g. It generalizes earlier work by

Goldberger [Go], Brillinger [Br], ...

Theorem 2: Suppose the joint probability density of (z,y, z) satisfies the two structural
assumptions

zly, (5a)
z
z = B'z where B is m x p of rank p. (5b)
and the design assumption
E(z | z) = A=. (5¢)
Then
E(z|y) = X::B(B'Y,.B)'B'E(z | y). (6)

Proof: We first use (5a). This gives E(z | y) = E(E(z | 2) | y). From (5¢) we find
E(z | y) = AE(z | y), and using (5b) gives E(z | y) = AB'E(z | y). Now, from (5c),
A=73..,%;} Using (5b) finally gives A = £,,B(B'S,.B)"!. Q.E.D.

The same results can be stated somewhat more compactly in terms of normalized scores.
Define 7 = Zz—,}/zx and B = 21423. Then (6) can also be written as
E(¢|y)=B(B'B)'B'E(& | y). (7

Observe that II =4.; B(B'B)~'B' is an orthogonal projector, i.e. it is symmetric and
idempotent. Let B = KAL' be the singular value decomposition of B, and let K be the

orthogonal complement of K. Thus K is m x p, and K; is m x (m — p). Also II = KK'
and [ -II=K,K'.

Theorem 3: Under the conditions of Theorem 2

V(E(E |y)KL =0, (8a)
E(V(E|y)KL =K.. (8b)

Proof: From formula (7) it follows that E(Z | y) = KK'E(Z | y), or K'E(Z | y) = 0.
This implies K| V(E (% | y)) = 0. But

I=V(&)=E(V(Z|y)+V(E(E]|y) (9)



Postmultiplying (9) with K gives
K, =E(V(z|y)K..

Q.E.D.

The SIR-I algorithm proposed by Li [Lil] is quite simple to understand from Theorem
3. We first estimate E(Z | y) by partitioning the range of y into a finite number of
intervals, and by taking the averages of the # in each of the intervals. If we use the
notation of Gifi [Gf], then the discretization of y gives an indicator matrix G. The diagonal
matrix D = G'G gives the sizes of the subgroups. We are interested in the matrix of
means M = X'GD~!, and we find the column space of B by computing eigenvectors
corresponding with the p largest eigenvalues of MDM' = X'GD~1G'X. These directions
are the same as the directions computed in canonical discriminant analysis, i.e. they are in
the directions in which the between-group variation is largest with respect to the within-
group variation. Alternatively we can use the second part of Theorem 3. This means
computing the within-group dispersion matrix in each of the slices, and then by averaging
over slices (using weights for the size of the slices). This gives, say, X'(I — GD™1G")X,
and we use the eigenvectors corresponding with the p smallest eigenvalues of this matrix
as estimates of the column space of B. Of course the two solutions are identical.

Li’s [Lil] SIR-II algorithm takes a different approach. It is based on the following gener-
alization of (8b).

Theorem 4: Under the conditions of Theorem 2
K'V(z|y)Ky =0. (10)

Proof: Conditional independence (1) is symmetric in ¢ and y. Thus we can interchange
z and y in (2b). This gives

V(@E|y)=E(V(E|2)|y)+V(E@E]|2)]y) (11)
Now, from the computations in Theorem 2,

V(E(Z|2)|y) =V 1z |y) =TIV (Z | y)IL
The second part of (11) is somewhat more complicated to handle.

V@|2)=V{IE+ (I -1z |2)=V(I -1z |2)=(I-N)V(Z]|2)(I-1I).

Thus
V@ |y)=I-ME(V(Z|z)|y)I-T)+TV(Z|y)IL (12)

Premultiplying (12) by K, and postmultiplying by K, gives (10). Q.E.D.



Postmultiplying (9) with K gives
K; =E(V(z|y)K..

Q.E.D.

The SIR-I algorithm proposed by Li [Li91] is quite simple to understand from Theorem
3. We first estimate E(Z | y) by partitioning the range of y into a finite number of
intervals, and by taking the averages of the Z in each of the intervals. If we use the
notation of Gifi [Gif90], then the discretization of y gives an indicator matrix G. The
diagonal matrix D = G'G gives the sizes of the subgroups. We are interested in the matrix
of means M = X'GD™', and we find the column space of B by computing eigenvectors
corresponding with the p largest eigenvalues of M DM’ = X'GD~1G'X. These directions
are the same as the directions computed in canonical discriminant analysis, i.e. they are in
the directions in which the between-group variation is largest with respect to the within-
group variation. Alternatively we can use the second part of Theorem 3. This means
computing the within-group dispersion matrix in each of the slices, and then by averaging
over slices (using weights for the size of the slices). This gives, say, X'(I - GD'GNX,
and we use the eigenvectors corresponding with the p smallest eigenvalues of this matrix
as estimates of the column space of B. Of course the two solutions are identical.

Li’s [Li91] SIR-II algorithm takes a different approach. It is based on the following gener-
alization of (8b).

Theorem 4: Under the conditions of Theorem 2
K'V(z|y)KL =0. (10)

Proof: Conditional independence (1) is symmetric in z and y. Thus we can interchange
z and y in (2b). This gives

V(@E|y)=E(V(Z]|2)|y)+V(E(@E]2)]y) (11)
Now, from the computations in Theorem 2,

V(E(Z|2)|y)=VIIZ|y) =TIV (Z | y)I.
The second part of (11) is somewhat more complicated to handle.

VE|2))=VIIi+(I-Mi|2z)=V(I-M)z |z)={ -O)V(Z | z)(I —1I).

Thus
V(@E|y)=(I-ME(V(Z|2)|y) -M)+IV(Z|y)IL (12)

Premultiplying (12) by K, and postmultiplying by K|, gives (10). Q.E.D.

T e )



Theorem 4 means that for each y there exists a rotation matrix M(y) such that KM(y)
are eigenvectors of V (Z | y), and there exists another rotation matrix N(y) such that
K| N(y) are eigenvectors of V (Z | y) as well. Computational implications of Theorem 4
are discussed by Li [Li91],[Li90c],[Li90a],[Li90b]. The most interesting possibility seems
to be to use a slight variation of the Jacobi-like simultaneous diagonalization algorithm
proposed first by De Leeuw and Pruzansky [dLP73]./References
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