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1. Model

Suppose we have m contexts, indexed by j, and in context j there
are nj individuals, indexed by i. Responses, denoted by y

ij
are binary1.

For each (i, j) there is also a vector with p fixed predictors xij.
The model we consider is a random intercept logistic regression model.

For each context, there is a random intercept uj. Thus

(1) prob(y
ij

= 1|uj = uj) = f(uj + x′ijβ),

where f is the logistic function, i.e.

(2) f(s) =
exp(s)

1 + exp(s)
.

We also assume that the m random intercepts are i.i.d. And that,
given the uj, all y

ij
are independent.

For the uj we also make the assumption that they are discrete, and
they take the values u1, · · · , ut with probabilities p1, · · · , pt. We will
assume, in the sequel, that the ps are known, and that the us and
known up to a multiplicative constant σ. In the application we have
in mind the us are the knots and the ps are the weights associasted
with a t-point Gauss-Hermite integration formula, i.e. we want to
approximate a normal random intercept. In other application we can
imagine actually optimizing over both the knots and the weights (and
the number of knots), to obtain a semi-parametric logistic random
intercept model (see Section 4).

The paper is concerned with the situation in which there are so
many predictors that second order techniques are not really possible.
We assume that it is impractical to compute the usual p× p matrices
approximating the second derivatives that are used in the Newton or
Gauss-Newton methods, i.e. in the methods of scoring and iterative
weighted least squares.

1Random variables are underlined.
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2. Likelihood

We now derive an expression for the log-likelihood from the assump-
tions in the previous section. Define

πij|s = f
yij
ijs (1− fijs)1−yij ,(3)

πj|s =

nj∏
i=1

πij|s,(4)

πj =
t∑

s=1

psπj|s,(5)

where

(6) fijs =
exp(gijs)

1 + exp(gijs)
,

and

(7) gijs = x′ijβ + σus.

In fact, there is a more convenient way to write (7). If we define the
p+ 1-element vectors zijs by

(8) zijsr =

{
xijr if r ≤ p

us if r = p+ 1
,

and the p+ 1-element vector γ by

(9) γr =

{
βr if r ≤ p

σ if r = p+ 1
,

then

(10) gijs = z′ijsγ.

Now

(11) L =
m∑
j=1

log πj.

and some calculation gives

(12)
∂L
∂γr

=
m∑
j=1

1

πj

t∑
s=1

psπj|s

nj∑
i=1

(yij − fijs)zijsr.

From the computational point of view, observe that we never compute
the πij|s. We simply cumulate the πj|s by multiplying the appropriate
terms. Also, we never store the zijs, which have a lot of redundancy. It
suffices to store the xij and us. Formulas (11) and (12) are enough to
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be able to apply conjugate gradient or other low-storage optimization
methods, such as the ones in SAS/NLP2.

3. Regularization by Majorization

The likelihood function discussed in the previous section is pretty
complicated. Mixture models tend to give flat likelihoods, often with
multiple local maxima. In this section we discuss an alternative ap-
proach, which combines conjugate gradient methods with use of the
EM algorithm to majorize the likelihood locally by a concave function.

In order to majorize, we use the concavity of the logarithm (in this
context also known as Jensen’s inequality). Suppose γ̃ is our current
best estimate of the parameters. Then

(13)
m∑
j=1

log
πj(γ)

πj(γ̃)
=

m∑
j=1

log

∑t
s=1 ps

πj|s(γ)

πj|s(γ̃)
πj|s(γ̃)∑t

s=1 psπj|s(γ̃)
≥

m∑
j=1

t∑
s=1

psπj|s(γ̃)

πj(γ̃)
log

πj|s(γ)

πj|s(γ̃)
=

m∑
j=1

t∑
s=1

πs|j(γ̃) log
πj|s(γ)

πj|s(γ̃)
.

This can be written as

(14) L(γ) ≥ L(γ̃) +K(γ, γ̃)−K(γ̃, γ̃),

with equality if and only if γ = γ̃. The only part depending on γ is

(15) K(γ, γ̃) =
m∑
j=1

t∑
s=1

πs|j(γ̃) log πj|s(γ) =

m∑
j=1

t∑
s=1

πs|j(γ̃)

nj∑
i=1

[yijz
′
ijsγ + log(1− fijs)].

K(γ, γ̃) is a concave function in γ, which must be maximized over γ.
Suppose we do not necessarily maximize, but merely choose γ̂ such
that

(16) K(γ̂, γ̃) > K(γ̃, γ̃)

Then (14) says that

(17) L(γ̂) ≥ L(γ̃) +K(γ̂, γ̃)−K(γ̃, γ̃),

and (16) then implies

(18) L(γ̂) > L(γ̃).

2Observe there is no need to require that σ ≥ 0. If our iterations converge to a
σ < 0 we just change its sign and that of the us



4 JAN DE LEEUW

Thus the likelihood is increased in each step, and since it is bounded
above this least to a convergent algorithm (provided the function that
updates γ is chosen to be continuous).

Mazimizing K(γ, γ̃) is actually very close to a standard logistic re-
gression problem. In fact, the derivatives are

(19)
∂K
∂γr

=
m∑
j=1

t∑
s=1

πs|j(γ̃)

nj∑
i=1

zijsr(yij − fijs).

We now have various options. We can make one or more ascent steps
to increase K(γ, γ̃), then use the newly found γ for γ̃, and continue
with the next majorization.

4. Semiparametric Random Intercept Logistic Regression

If the knots us and the weights ps are not known, we can optimize
over them. This is easy to do for the us. Simply redefine (7) by writing

(20) gijs = x′ijβ + us,

where the us are now additional unknowns3. This means that the
vectors zijs now have p+ t elements, defined by

(21) zijsr =


xijr if r ≤ p

1 if r = p+ s

0 otherwise.

,

while γ now has both the p elements of β and the t elements of u.
Optimizing over p can be done by utilizing self-consistency, which

is basically just another example of majorization or EM. The iterative
equation is

(22) ps =
1

m

m∑
j=1

πs|j.

Again, in the actual implementation we can cycle through the un-
knowns γ and p in various ways. Generally, we alternate any number
of γ iterations with any number of p iterations.

UCLA Program in Statistics, 405 Hilgard Avenue, Los Angeles, CA
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3Again, there is no reason to require the us to be ordered in any way. We can
just order them after convergence, if we think this is appropriate


