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Many problems in data analysis can be formulated in terms of minimiz- 
ing a function of residuals. Residuals measure deviation from the ideal situa- 
tion, in which situation they vanish. In most cases, the residuals are a function 
of unknown parameters. Observe that we have not stipulated that there is pre- 
cisely one.residual per observation, or that residuals are deviations between 
observed and expected values. This is true in some techniques, and not in 
others. For our purposes, residuals are merely a bunch of quantities ri(O), 
depending on the parameter 0, which we would like to be small. The job of 
the statistician is to choose 0 in such a way that the residuals are as small as 
possible. In the optimal scaling approach to multivariate analysis, which is 
sometimes described as nonlinear multivariate analysis, the parameters 
include transformations of the variables. 

If there was only a single residual, most people would agree on the 
definition of what is "small ." It is given by the modulus of the number. But 
if we have many residuals, we need some way of combining them into a sin- 
gle number, which we then can proceed to call "smal l"  or "large." Classi- 
cal recipes of making these combinations are the sum of squared residuals 
(Gauss-Legendre), the sum of absolute deviations (Boskovitch, Laplace), and 
(in approximation theory) the largest absolute deviation (Chebyshev). In 
robust statistics, which emphasizes outliers and distributions with heavy tails, 
combination rules usually downweight large residuals before combining them 
additively. This leads to a class of combination rules of the form 

?~ 

L(O) = ~ O(ri(O)), 
i=1 

where 0 is some function reweighting the residuals. Estimators of 0 minimiz- 
ing a loss function of this form are called M-estimators, at least in the context 
of location and regression. Usually O(r) >_ 0, and 0(0) = 0. In many cases 0 is 
chosen to be redescending, which means that its derivative goes to zero if r 
goes to plus or minus infinity. 

Given this terminology and notation, we can now discuss what is in the 
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the University of  Leiden. It can be interpreted as yet another volume in the 
series of books on nonlinear multivariate analysis, or the Gift techniques. 
Chapter 1 indicates that outliers are not uncommon in NLMVA, and they can 
dominate the outcome of the analysis. At least I think that is what it intends to 
convey. The chapter is a quick and rather superficial discussion of  some of 
the key concepts used in the book, without indicating precisely what makes 
these concepts important. It follows that the book is mostly useful for readers 
who already know about robust statistics and downweighting of outliers. 

Chapter 2 is the most original and the most important part of  the book. 
It discusses the iterative majorization algorithms which are used in many of 
the more complicated Gift system. Majorization is used to replace an optimi- 
zation problem by a sequence of  simpler problems, which are local approxi- 
mations to the original problem. Solving the sequence of simpler problems 
produces a sequence converging to the solution of the original problem. It has 
been well known since the work of  Holland and Welch in the mid-seventies 
that robust regression problems can be solved by constructing a sequence of 
iterative least squares problems. To prove global convergence of such pro- 
cedures, one needs the concept of  majorization. 

In Chapter 2 majorizations are derived for the Huber, Tukey, and Ham- 
pel reweighting functions. Unfortunately, the derivations seem to be some- 
what ad hoc, and is unclear what the general principle behind them is. Thus it 
is not trivial to generalize to other reweighting functions. A more general 
approach would be based on the observation that all reweighting functions 
have a bounded second derivative. Thus (~"(r)< M for all r, and conse- 
quently 

r < dO(~') + d/(~')(r - ~') + 2 M ( r  - 3) 2 

, 1 = 0(~) _ ~ _  [q~.(~)]2 + M(r - r )  2, 

where r = ? - 1 ~ . ( ? ) .  This automatically gives a quadratic majorizer. It can 

often be improved if we have an inequality of the form ~"(r )  < k(r) for all r, 
where k is some simple function. I think most of the majofizations proposed 
in the book fit into this general framework. Quadratic majorizations always 
lead to least squares problems, i.e. to iterative reweighted least squares. Thus 
the general approach outlined in the book makes it possible to replace addi- 
tive reweightings of the residuals by sequences of least squares functions (as 
long as there are bounded second derivatives). 

This is what Verboon does in the rest of the book for some examples 
important in multivariate data anlysis. Thus there is robust Procrustus match- 
ing, robust canonical discriminant analysis, robust multiple regression, and 
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robust principal component analysis. These applied chapters are well-written, 
with nice examples, and with questions of stability and inference briefly dis- 
cussed. The approach is not always successfull, and in some cases does not 
really improve the non-robust least squares methods, but the advantages of 
having a general framework in which to incorporate redescending reweight- 
ing of residuals is clear. 

In summary, the book is useful for people who already know quite a bit 
about robust regression, nonlinear multivariate analysis according to Gift, and 
majorization algorithms. It cannot be used as an introduction to these topics. 
For this (presumably rather small) class of researchers Verboon presents a 
wen-written and nicely illustrated extension of the basic least squares 
approach. He does not emphasize, unfortunately, that the gain in generality 
comes with a non-ignorable price-tag. Many aspects of least squares, such as 
the connection with Euclidean geometry, with projections, and with linearity, 
are lost - -  with a corresponding loss in interpretational possibilities and 
analytical results. It is highly doubtful, given the relatively minor gains sum- 
marized in Chapter 7, that applied reseachers are willing to pay the price. 
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