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ABSTRACT

We study the permutational limit distribution of goodness-of-fit statistics com-
puted in various forms of generalized canonical correlation analysis. In simple
cases of canonical analysis the exact distribution can be computed. For somewhat
more complicated forms approximations have been tabulated by Krishnaiah and
others. For the most general forms of canonical analysis we must use resampling
methods to generate the permutation distribution. Our approach is illustrated by
examples of varying degree of complexity. For small examples we can actually
study the quality of our approximations. For more complicated examples this is
not possible, but the approximate permutation distributions themselves are a very
valuable data analytical tool.

INTRODUCTION

Canomical correlation analysis is a familiar data analysis technique. It is
closely related to other well known techniques such as multiple regression, dis-
criminant analysis, analysis of variance, principal component analysis, corre-
spondence analysis, and so on. 1f we define canonical analysis broadly enough,
it includes the other techniques as special cases. This fact is used in Gifi
(1981) to build a very general system of multivariate analysis methods, which are
all versions of a very general form of canonical analysis. A short, but fairly
complete, introduction to the Gifi system is given by De Leeuw (1984a). A de-
tailed discussion of the general form of canonical analysis used in this paper
is contained in Van der Burg, et al. (1984). The various forms of canonical analy-
sis are typical data analysis techniques, in the sense that they are used in
exploratory situationms, emphasize graphical representation, and are seldom used
for inferential purposes. This is sometimes presented as a disadvantage of this
class of techniques, because we have no information about 'generalizability' or
'gsignificance’ of the results. It is shown in Gifi (1981), compare also De Leeuw
(1984b), that under random sampling assumptions it is possible to derive con-
fidence interval information for large classes of canonical correlation tech-
niques.

If the random sampling assumptioms are not appropriate, which will very often be
the case, we can use the resampling framework provided by the Bootstrap or the
Jackknife (Efron, 1979, 1982, Efron and Gong, 1983). This provides us with 'non-
stochastic confidence interval estimates', to paraphrase a term of Freedman and
Lane (1983). ‘

In the same way we can try to find significance tests for some interesting hypo-
theses in this class of techniques. There are some proposals valid under random
sampling assumptions in De Leeuw (1984b). As is also pointed out there, these
tests have a 'nonstochastic' interpretation in a randomization framework based
on permutations. Freedman and Lane (1983) present randomization versions of
chi-square and F-test in a very similar framework. Edgington (1980) studies per-
mutation tests as general data analytical tools. In this paper we work out some
of the suggestions in De Leeuw (1984b), and study some permutation tests for
generalized canonical analysis.
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We shall first discuss a fairly general class of generalized canonical corre-
lation techniques in a coordinate-free way. This does not cover all cases of
interest. We shall introduce additional generality further on.

Suppose H is a vector space, and L ,....,L are subspaces of H. Then L_,....,L
are said to have a p-meet if the dimensionafﬁty of their intersection is at least
p, i.e. if and only if they have a p-dimensional subspace in common. In canonical
analysis we start with m given subspaces, and we try to find the largest possible
common subspace. In practical problems, of course, subspaces have no nontrivial
meets, and we have to find a best-fitting subspace of predetermined dimension-

ality. In order to define fit, we need ways to measure distance between sub-
spaces.

In canonical analysis we suppose that H is a real inmer product space. If P, is
the orthogonal projector corresponding with L., and P, is the average of theJP.,
the fit is the sum of the p largest eigenvaldes of P,. This definition assumel,
of course, that these eigenvalues exist, which will always be the case if the L.
are finite dimengional. For computational purposes we need bases for these finit
dimensional spaces. Suppose G y+++.,G are orthonormal bases for L P
Collect them in the supermatrices G=(G» .... G ). Then the p largest elgenvalugs
of P,=-GG' are equal to the p largesg eigenvglues of C=-G'G, compare De Leeuw
(1984af. We can also &hink of C as a super-matrix, of Which the elements C, .
are matrices equal to =G.G.. Clearly C depends on the choice of the bases, bt
its eigenvalues do not® Thd eigenvalues of P, (or of C) are called generalized
canonical correlations.

We now make the further generalization mentioned above. Let us call the general-~
ized canonical correlation technique introduced above linear. It is characterized
among the more general class of nonlinear techniques by the fact that the sub-
spaces L. are completely known. In the more complicated nonlinear techniques L.
is only ‘partially known. More precisely L. is defined as the linear span of K
vectors. Each of these vectors is known td lie in a given convex cone in H. Thud
there are k. convex cones for L., a total of k.+...+k_ convex cones. We are still
interested in the p largest ei%envalues of P, or C, but these now depend on the
choice of each of the vectors from their cones. Generalized canonical correla-
tions in nonlinear problems are defined as those eigenvalues corresponding with a
fit which is maximized over this choice. The linear case corresponds with the
exceedingly special case in which each of the cones is a single ray through the

origin. For more details we refer to Gifi (1981), De Leeuw (1984a), and Van der
Burg et al. (1984).

Nonlinear generalized canonical correlation problems are no longer eigenvalue
problems. Moreover they cannot be presented in a coordinate-free form. If the
columns of G, are chosen from the corresponding k. cones, and A is arbitrary,
then the columns of G.A will not be in the same ones any more (unless A is
diagonal). In order td stress the similarity with the linear case, we define a
matrix G=(G, .... GK), with K the sum of the k,, and with each G. the spanning
set of a single cone. The generalized ianonic 1 correlations indthe nonlinear
problem are a function of the matrix C==G'G, although often a very complicated
function. If all cones are rays the spanging sets have dimension one, and we are
back in the linear case. Again we refer to the literature for all the additional
computational and conceptual details. We merely emphasize here that we gain a
great deal of gemerality in passing from the linear to the nonlinear case, but
we loose many useful structural mathematical properties.

PERMUTATION DISTRIBUTION OF EIGENVALUES

Suppose that for a given canonical correlation analysis problem we have computed
the generalized canonical correlations. We would like to kmow if these canonical

1
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correlations are 'significant', i.e. if they are larger than one would expect if
there was no structure at all in the data. We study the concept of 'nonstructure
at all' in the case where the Gj are given n x kJ. matrices, i.e. H is R,

Let us start with the linear case. The canonical correlations, collected in the

vector A, are functions of G=(G, ... G ). We write A(G ,....,Gm) to indicate
this. Now suppose that @ ,....,QW are in@ependent random matrices, which are all
vniformly distributed ovér the n! permutation matrices of order n. Observe that

we underline random variables, a nice convention described in detail by Hemelrijk
(1966). We study the distribution of the random variable A=A(Q Gl,....,Qme),
i.e. we study the permutation distribution (PD) of A. The idea be}dnd using per-
mutation tests is, of course, that they are one way of formalizing the notion of
'no structure'. The random variation is introduced conditionally on the data,
which implies that we do not have to assume a particular probability model that
has generated these data.

The PD can be studied in various ways. It can be computed exactly, but because
the m independent permutations take on (n!) different values, this is only
feasible for small n and m. A considerablﬁ saving is possible by realizing
that A depends on G.,....3G_ only through C=-G'G. Thus it suffices to study the
different values tallcen on by C, each weighténd with their probability under the

PD.

We illustrate this with a familiar example (Lebart, 1976). Suppose m=2 and F
and F, are indicators of two nominal variables. Then F‘Fl and F)F, are diagogpi
matrifes with univariate marginals. Now define G =F1(FJF ) K ang ?;2=F2(F'F ) ,
Suppose k. Sk,, and suppose p_ (s=1,....,k;) are t%le usual canonical®correlations
between G, and G,. Then C has k eigenvallues (or generalized canonical correla-
tions) equal to %(l+p ), k, eigenvalues equal to %(1-p_), and k -k, eigenvalues
equal to %. Studying fhe PD of A amounts to the same thslng as stiudying the PD of
p, which is a function of F,F, only. Now QiFiF Q. takes as its values all tables
with the same marginals as %'% , and gives eacﬁ %able a weight equal to the cor-
responding hypergeometric prc}bgbilit:y. Thus the PD we study is the same as the
distribution studied in Fisher's exact test of independence in k_xk, contingency
tables. Clever enumeration methods to compute this distribution are reviewed and
implemented by Verbeek and Kroonenberg (in press) An even more special case
should perhaps also be mentioned. If m=k =k2=2, then we have Fisher's test for
a 2x2 table. In this case the canonical correlations are %(1+p), with p the
point-correlation or phi-coefficient. This is monotonic with the chi-square of
the table, and for given marginals monotonic with the contents of cell (1,1) in
the cross table. Compare Kendall and Stuart (1967, page 549-555), where refer-
ences to published tables of significance probabilities can be found. If m=2
and both variables are numerical (i.e. k. =k =1), then the eigenvalues are %(1+p)
and %(1-p), with -p the product moment correlation between the variables. Thus
the PD we study in this case is the PD of the correlation coefficient (Kendall
and Stuart, 1967, page 373-475), which very closely follows its normal theory
sampling distribution. Of course enumeration as a method for the computation of
the PD of A can also be used in the nonlinear case. It does not seem very practi-
cal for m>2, however, and nonlinear methods are often used for large m.

APPROXIMATING THE PERMUTATION DISTRIBUTION

Welstudy the permutation distribution of the matrix C first, where

o t

E_E(QIGI gme) (9161 gme).

We assume here that G'G.=I, and that the columns of all 6. add up to zero. This
can be done without lo$s’ of generality, at least in the lindar case. The diagonal
submatrices mC.. are all equal to the identity, only the off-diagonal matrices
C.. have rand variation. The asymptotic distribution of the elements of C,
i%Jn-N», follows directly from the permutational limit theorems of Wald, Wolfowitz,
Hoeffding, Hajek, Motoo, and many others. Compare Puri and Sen (1971, section
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3.4) for references. More precise results have peen derived recently by Ho and

Chen (1978).

For our purposes it suffices to observe that the elements in the off-diagonal
submatrices of m C are approxiTately independent normal variables, with means
zero, and with dispersion (n-1) . Normality follows from the permutational limit
theorems, while the expression for the variances follows from simple algebraic
computations. We prefer to interpret this result, in conformity with Ho and Chen
(1978), as a approximation theorem, and not as a limit theorem. Thus off-diagonal
elements of (n-l)img are approximately independent standard normal. This implies,
by the way, the approximate chi-square distribution of the sum of squares of all
elements in a single off-diagonal Eij’ which was used earlier by Freedman and

Lane (1983).

The above result is useful also in the nonlinear case, which can be formulated
in terms of C. We now proceed with the eigenproblem for C, which is only rele-
vant in the linear case. If we write mg=1+(n-1)1§, then Z has approximately
standard normal off-diagonal blocks and exactly zero diagonal blocks. Clearly
mA(g)=1+(n—1)éh(§), or (nZ%1) ﬁ(mk(g)-1)=h(§). Now suppose A are the eigenvalues
of C, in decreasing order. Because ordered eigenvalues are § continuous function
of the matrix elements (Kato, 1970, section I11.6.4, page 124), it follows that
the approximate PD of (n-1) ﬁ(m& -1) is the distribution of w_, which is the s~th
eigenvalue of a matrix with off§diagonal blocks composed of independent standard
normals and diagonal blocks zero. The distribution of w_ only depends on the
numbers k., and it can in principle be tabulated as a function of these numbers.
Of coursed the attractiveness of this result is that the approximate PD does not
depend on the spaces L., but only en their dimensionalities. The result is thus

not only coordinate-fre%, but actually 'space-free'.

It is possible to proceed a little further if m=2. There is only one off-diagonal
block in this case, and the w are the singular values of this block. Singular
values of this block Z are square roots of eigenvalues of 2'Z, which are approxi-
mately standard Wishart matrices. Significance points of eigenvalues of standard
Wishart matrices have been tabulated by Clemm et al. (1973a, 1973b), compare also
Krishnaiah (1980). The tables are computed by using formulas for the exact distri-
bution. It would be interesting to generalize these formulas to the case m>2,
and to write algorithms for evaluating the resulting distribution. Such a project
seems to be quite feasible, and it would make it possible to compute the approxi-
mate PD of the generalized canonical correlation coefficients in all linear
problems. For nonlinear problems the situation is inherently more complicated.
Although the canomical correlations are still functioms of C, these functions
are so complicated that we cannot proceed any further in the approximation of
the PD. In the nonlinear case we have to resort to Monte Carlo methods, which we

will described next.

MONTE CARLO METHODS

We give a brief §%mmary of the results obtained so far. Let

FS(X)=prob{(n-1) (mA -1)<x},

6° (x)=probiw_<x}.

Then we know that F_(x)=G_(x), with the approximation becoming more precise as n
increases. We have sBen th3t F (x) can sometimes be computed exactly (if m=2, and
and n are all small).sIn other cases G_(x) can be computed exactly. If

k,, k,,
m%2, gor instance, and k1=k =1, then w, is the modulus of a standard normal vari-
able. For genmeral k. and we need the distribution of the eigenvalues of a

standard Wishart matrix, for which formulas and tables are available in the work

of Clemm, Krishnaiah, et al. (1973b).

In other cases (and this includes all nonlinear generalized canonical analysis
problems) we have to approximate either Fs or Gs by Monte Carlo methods. Approxi-
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mating F_ is very easy and straightforward. Each sample consists of m random per-
mutation® of order n, and after permuting the individuals or objects the canoni-
cal analysis is carried out. Then a new sample is drawn, and so on. We call this
the random permutation method. Approximating G_ is somewhat more complicated. We
£fill the non-diagonal blocks of C with independent standard normals, and then
compute our statistics. Then draw another sample, and so on. This is the C-matrix
method. We do not know how many Monte Carlo samples are needed for a good
approximation, and which of the two methods works better. It seems to us that
approximating F_ gives a more direct answer to the question we are investigating,
and it is alsd more easy to interpret from a data analysis point of view.
Approximating G_ only seems to make sense if n is already quite large, and in
such conditions it may very well be more economical.

Very often our choice between the two methods is more or less determined by the
fact that some canonical analysis programs use the data matrix as input, while
others use the C-matrix (the Burt-table).

A final possibility, which we shall not conmsider in this paper, is to approximate
Fs(x) or G (x) for very large m, or very large Zk.. De Leeuw (1984b) has some
téntative suggestions and some references relevant for this case.

EXAMPLES

In this section we analyze various examples to illustrate significance testing,
and to compare the two approximations to the PD. The random permutation method
was implemented in FORTRAN, on the basis of the generalized canonical correlation
program OVERALS (Van der Burg a.o., 1984). The computations for the C-matrix
method were done in APL, on the basis of an ad hoc program for the linear case.
The enumeration method for computing the exact PD used programs developed by
Verbeek and Kroonenberg (in press). We would like to thank Pieter Kroonenberg,
who assisted us with the use of these programs.

Some general remarks about our analysis of the examples are perhaps in order.
We use 'generalized correlation coefficients' and 'eigenvalues' for the same
objects, i.e. the eigenvalues of P, and C. Variables are treated as multiple
nominal if they are coded as dummies i.e. as sets of binary variables. On these
sets of dummies a linear analysis is performed. A variable is treated in a
single nominal way if it is quantified as a single vector selected from the sub-
space spanned by the dummies, it is single ordinal if in addition we require that
the order of the categories is maintained. Analyses with single variables are
necessarily nonlinear, except in the case that p=1.

In our tables the empirical value of a generalized canonical correlation is the
value which corresponds to the original data {‘before permutation'). The distri-
bution of the eigenvalues is plotted by using cumulative normal probability
plots, and tabulated by giving percentiles (5,25,50,75,95). Because our Monte
Carlo runs use samples of size 100, we simply tabulate the order statistics }\(5),

Measy M50y M (75) M 95y

Example 1: Journal data, taken from Kroonenberg and Van der Veer (1980). For
several Dutch journals the authors investigated crime reports, more precisely
the country of origin of the criminal (Surinam, Turkey & Marocco, No reference)
versus the number of the page on which the crime was reported (One, Three, or
Other). We used the frequency tables .of four papers (Parool, Volkskrant, NRC,
Telegraaf). In table 1 we give the two largest generalized canonical correla-
tions, and their significances (i.e. the probability or estimated probability of
a value at least as large as the observed value). We use three methods: complete
enumeration, the random permutation method, and the C-matrix method. Both Monte
Carlo methods used 100 permutations or normal samples. They are mot very precise
in this case, but they do give a quite reliable idea about the exact signifi-
cance. For 'Telegraaf' the approximation was very good, because the Telegraaf
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table is based on 106 crime reports, while the other newspapers each had approxi-
mately 50. The tendency is that the C-matrix method underestimates and the permu-
tation method overestimates the true probability.

TABLE 1: Journals: ethnic group x page number. Generalized canonical correlation
(ev), significance according to all permutations (signl), to a random
sample of permutations (sign2), and to the C-matrix method (sign3).

ev signl sign2 sign3
Parool .605 .62 .59 .64
571 .22 25 11
Volkskrant .593 .91 .94 .81
244 46 54 44
NRC .691 .05 .14 .09
571 11 12 11
Telegraaf .596 .36 .39 .36
507 .83 83 83

Example 2: Patients, taken from Williams and Grizzle (1972). Cancer patients
classified according to ulcer pain and type of medication. A 4x3 table, with 244
individuals, of which 170 are in cell (no pain, no medication). The eigenvalues
are .846 and .645, they are both significant (p<.01) according to the random
permutation method, the C-matrix method, and the tables of Krishnaiah,.,The exact
significance probability, computed by enumeration, is smaller than 10 '. Table 2
compares the two Monte Carlo methods, which give very similar estimates of the
distribution.

TABLE 2: Generalized canonical correlations: empirical values (ev) and generated
values at 5, 25, 75 and 95 percent. Random permutation method and C-ma-
trix method. Patients data, multiple nominal.

Permutation method C-matrix method

diml  dim2 diml dim2
ev 846 645 846 645
5 530 508 535 507
25 555 .518 550  .517
50 564  .526 567 528
75 577 .537 579 538
95 596  .551 608 553

Example 3: From Year to Year (FYTY) data are part of a large schoolcareer survey
(for references, see De Leeuw and Stoop, 1979). There are 1762 school children
in our study. The four variables are choice of school after leaving primary
school, achievement test score in sixth grade, educational level of father, and
educational level of mother. We did three analyses: multiple nominal, single
nominal, and numerical. The two educational level variables were used in the
first set, the test score and school choice in the second set. Eigenvalues of
the three analyses (all with p=2) were, respectively, .744 and .570, .735 and
.530, .714 and .496. The probability plots in figure 1 show that the eigenvalue
distribution does not deviate very much from normality. The first multiple
nominal eigenvalue is a little bit light in the tails, but the deviations are
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rather small. Tables 3 and 4 show the percentiles obtained from the Monte Carlo
method. The tables agree, although the C-matrix method gives slightly higher
values, especially for lower percentages. This may be due partly to the superior
precision of the APL eigenvalue algorithm, the last column of table 3 shows that
OVERALS cannot be very precise (theoretically all values should be larger than
.500 in the two sets case). Tables 3 and 4 tell us that the second eigenvalue
has a low significance probability. Especially in the numerical case it is not
significant. The same conclusion follows form the tables of Krishnaiah.

TABLE 3: Generalized canonical correlations: empirical values (ev) and gener-
ated values at 5, 25, 50, 75 and 95 percent. Random permutation method.
From Year to Year data, multiple nominal, single nominal and numerical.

mult nominal single nom numerical
diml dim2 . diml dim2 diml dim2
ev 744 570 735 530 714 496
5 549 532 533 511 501 482
25 554 542 543 521 511 494
50 559 545 549 527 518 499
75 564 550 554 532 525 504
95 570 557 565 541 532 514

TABLE 4: Generalized canonical correlations: empirical values (ev) and gener-
ated values at 5, 25, 50, 75 and 95 percent. C-matrix method. From Year
to Year data, multiple nominal and numerical.

multiple nom numerical
diml dim2 diml  dim2
ev 744 570 714 496
5 553 545 509 500
25 560 550 514 503
50 .565 .554 521 506
75 .569 .557 .525 .504
95 574 .562 .535 514

Example 4: Chronic Lung Disease data, taken from Van Pelt a.o. (1985). Gerard
Borsboom and Wilfrid van Pelt assisted us in analyzing these data. There are
4241 patients, and three sets of variables. The first set (smoking habits) has
two variables, the second set (respiratory symptoms) has five, and the third
set (flow-volume-curve parameters) has 13. Variables in the first two sets are
treated as single nominal, and those in the third set as single ordinal. The
three two-sets nonlinear canonical correlation problems with p=2 were computed
separately. The eigenvalues are in the first row of table 5, while the rest of
the table shows percentiles of the PD (all estimated by the random permutation
method). In the S & M analysis probability plots [given in figure 2] show a
large deviation from normality for the first eigenvalue, all eigenvalues are
very clearly significant, however. All estimated PD's have small variance, we
see that A ~A,.+<.03, except for dimension 1 of § & M (which has a very light
tail on th&MghtPIA, _T-A,__\=.035)

EAE> g5y ™Mas) T )
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TABLE 5: Generalized canonic
permutation method.
M = MEFV-curve indices, R

al

correlations:

empirical

Chronic Lung Disease data,
= respiratory symptoms.

values

(ev) Random
S = smoking habits,

S &R S &M R&M
diml  dim2 diml dim2 diml  dim2
ev 672 .562 .868 .625 .718 .602
5 539 513 .589 .559 581 .555
25 .544 520 .598 .569 .585 .565
50 .548 .526 .608 .578 589 .571
75 .552 .532 .619 .581 .592 .577
95 .559 .535 .654 587 .601 .580
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FIGURE 3: Russett random permutations. Eigenvalues (ordered)
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Example 5: Data from Russett (1969). Three sets of variables describing 47 coun-
tries. The first set contains two variables concerning ownership of land, the
second set consists of gross national product and percentage of people working
in agriculture, and the third set has four variables that are indicators for
political instability. We used discretizations of the variables as in Gifi
(1981). Data were analyzed either with multiple nominal or with numerical op-
tions, PD's were estimated by random permutations and by the C-matrix method.
Eigenvalues and percentiles are in table 6. The estimated significance levels
(using random permutations) are .11 and .41 for multiple nominal and .01 and .31
for numerical. These significances are low, but the number of countries is
rather small. The small number of countries also explains the fairly large dif-
ferences between the two Monte Carlo methods. The C-matrix method gives higher
values for the percentiles. Figure 3 shows the empirical distribution functions
of the eigenvalues, and figure 4 the cumulative normal plots. There seems to be
no systematic deviation from normality.
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FIGURE 4: Russett random permutations. Probability plot
of eigenvalues.
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TABLE 6: Generalized canonical correlations: empirical values {ev) and generated
values at 5, 25, 50, 75 and 95 percent. Random permutation method and
C-matric method. Russett data, multiple nominal and numerical.

Random permutation method C-matrix method

mult nom numerical mult nom numerical

diml dim2 diml dim2 diml dim2 diml dim2
ev 815 .737 687 .462 815 .737 687 462
5 724 695 462 397 748 710 457 408
25 754 714 499 426 775 732 480 426
50 773 .731 525 .445 795 745 500 443
75 794 .752 545 .467 809 .757 519 463
95 830 .778 576 .488 841 782 562 488

v
CONCLUSIONS

It appears from our examples that both the random permutation method and the
C-matrix method give a fairly good approximation to significance probabilities
and permutation distributions. In order to be sure, we shall have to apply
enumeration somewhat more extensively. We also need to generalize the exact com-
putation of G_ to the case of more than two sets. But from our experience so
far, we can say that the Monte Carlo methods give the correct indication of the
order of significance, and they show that with multiple options and not too many
individuals the eigenvalues have to be very high to be significant. It is not
surprising, for instance, that Gifi (1981) had great difficulty in interpreting
the second dimension in the solution for the Russett data. Our approximations to
the permutation distribution guard us against chance capitalization, and against
trying to interpret effects which are not really there.
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