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Abstract

It is a well-known fact that correspondence analysis can be described
as a technique which decomposes the departure from independence in a
two-way contingency table. In this paper a technique is decomposed
with which the departure from quasi-independence can be decomposed. We
name this technique quasi-correspondence analysis.
Quasi-correspondence analysis seems to be a good alternative to
correspondence analysis in cases that the use of the latter should not
be recommended, e.g. in case of structural zeros. It is shown that one
form of quasi-correspondence analysis is formally identical to Nora's
reconstitution of order =zero. Furthermore, it is shown how
quasi-correspondence analysis <can be performed using existing

correspondence analysis programs. We discuss several examples.
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1. Introduction

In this paper we introduce a modification of correspondence analysis
(CA, from now on) which can be wused in combination with the
quasi-independence models familiar from log-~linear analysis. The
technique we propose decomposes the residuals that are left after
fitting a quasi-independence model. The decomposed residuals are
represented geometrically. Thus our paper interprets CA as a technique
which can be used complementary to log-linear analysis. A similar
approach has been adopted by Daudin & Trécourt (1980), Israéls &
Sikkel (1982), and Lauro & Decarli (1982). It is also possible to think
of CA as a model in its own right. This is the approach taken by
Goodman (1985), for example.

The French approach to CA, originated by Benzécri (1973, 1980), and
described in considerable detail by Greenacre (1984), interprets CA as
a multi-dimensional scaling technique which makes pictures of data
matrices. No model is involved. Although we think that the model-free
interpretation of CA is in many cases the most natural one, we also
think that combination and comparison with current modelling
approaches for frequency tables is quite useful. This was illustrated
in Van der Heijden (1985, 1986) for transition matrices, and in Van

der Heijden and De Leeuw (1985) for multi-way tables.

In the complementary interpretation of CA we study it as a technique
to represent residuals of a log-linear analysis in a picture. Both the
geometrical and the modelling aspects are present in this approach,
but clearly the modelling is predominant. We only apply CA on the
variation that is left after the model is fitted. A model with a good
fit leaves very little variation, and thus CA will be quite useless in
such cases. This is more or less true by definition: a model fits well
if there is no systematic variation in the residuals. As a consequence
CA is most useful in combination with models that do not fit well.
Thus we must combine the use of CA with the use of fairly restrictive
models. Classical CA is, in our interpretation, complementary to the

complete independence model, which is of course highly restrictive.

The technique in this paper is called quasi-correspondence analysis



(QCA) for two reasons. In the first place it analyses residuals from
the quasi-independence model. In the second place there are purists
who argue that CA is a very specific technique, and that techniques
which differ from it are consequently not CA. If we use such strict
criteria, then our technique is not really CA, but it has a number of
important features in common with it. Thus it is perhaps better to use

a name such as QCA for this reason too.

2. Quasi-independence models

Before we proceed with a discussion of CA, and our generalisation of
it, we briefly outline the quasi-independence model for two-way
tables. For a much more complete discussion we refer to Caussinus
(1965), Mosteller (1968), Goodman (1968), Bishop, Fienberg and Holland
(1975, pp. 177-210), and Haberman (1979, pp. 444-486).

The quasi-independence model is a generalization of the complete
independence model to incomplete tables. Tables can be incomplete for
various reasons. In the first place, of course, we may not know
entries of some cells. This often happens in secondary analysis. It
can also happen because some data are only available in some regions,
or for some years, or for some groups, and not for others. Thus data
are missing. In principle they could be collected, or could have been
collected, but for some reason or another they were not. Since we
cannot use the empty cells in our calculations, we need some form of
adaptation of the usual statistical analysis. The "usual" statistical
analysis, by the way, is computing the chi-square statistic for

testing independence of the row- and column-classification.

Tables can also be incomplete because observations cannot possibly
occur in given cells, because these cells pertain to events that
cannot logically occur. If we cross 'age-at-first-marriage' with
‘current age', then cells for which age-at-first-marriage is larger
than current age are obviously empty. If we analyze import-export
tables between countries, then the diagonal cells of the table are, by

definition, empty. Such empty cells are often called structural zeros.

They must be distinguished both from observed zeros, which happen to



be zero because the sample is not large enough, and from missing data,
which happen to be zero because relevant data were not collected.

Again classical chi-square techniques cannot be used.

A third possibility is that we may decide that we want to apply the
independence model to some cells, but not to others. The remaining
cells are observed, but we do not want to model them. Thus the table
need not be incomplete in this case. This happens in transition
matrices, in confusion matrices, and in social mobility tables, in
which the diagonal elements usually require separate parameters.
Interaction matrices with a structural =zero diagonal, such as
input-output tables, or migration tables, are very similar, because in

that case we also do not model the (structural) zero.

A final application, related to the previous one, is that we
decide a posteriori that some cells will not be restricted. Thus we
first perform a classical chi-square analysis, for example, and
discover a large residual which influences the results in a dramatic
way. We eliminate the outlying cell by not requiring independence for
this cell, and repeat the analysis. This is, of course, a form of
'data snooping', and it should be used with great care. As a technique

- to eliminate dominating residuals it seems fairly promising, however.

The mathematical form of the quasi-independence model is very simple.
Suppose that a complete table pij is observed. We want to fit this
table with a model nij which assumes that nij = aiBj for all (i,j) in
a given set of index pairs K. The nij with (i,j) not in K are

unrestricted. The multinomial likelihood equations are simply
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(1b) z{pijl ieI(j)}= ie 1(3)}.

Here we have written J(i) for those j for which (i,j) is in K, and
I(j) for those i for which (i,j) is in K. Thus (1) tells us that the
marginals over the restricted cells of the observed and expected table
;= Py
which means that they are estimated by substituting observed cell

must be the same. For the (i,j) not in K we find simply m



entries. In the case of structural zeros or missing data we do not

estimate oy if (i,j) is not in K.

The likelihood equations (la) and (1b) can be written in yet another
way. Define a matrix R with rij = pij for all (i,j) in K, and with
Iy = diBj for all (i,j) not in K. Then

(2) Ty rys = Hpgs | 8 I} + agXB | 5 £ I

Suppose we replace indices over which we have summed by a '+'. Then
substituting from (la) we find that the maximum likelihood estimate

1+
as

r., = aiB+, and in the same way r+j = U+Bj. This can also be written

(3) rij = ri+r+j/r++,

which must be true for all (i,j) not in K. Conversely if we have an R
which satisfies (3) for all (i,j) not in K, and which satisfies

=Py for all (i,j) in K, then we can define M= /x,, for

Fij j 7 TitT+j
all (i,j) in K and prove easily that these nij satisfy (la) and (1b).

3. Algorithms for computing maximum likelihood estimates

The 3 x 3 matrix in table 1 is taken from Reynolds (1977, p. 25).
Columns indicate vote of husband in the 1968 elections, rows indicate
the vote of his spouse. The chi~-square for independence is 5353.33,
with 4 degrees of freedom. We have the feeling that this mainly
reflects the very large diagonal entries of the tables, and we want to
investigate whether votes of husbands and wifes are independent if it
is known that they vote differently. Thus we fit a quasi-independence
model, in which K is the set of all six index pairs corresponding with

off-diagonal cells.

The first algorithm we discuss is of the 'iterative proportional
fitting' type. It 1is suggested directly by the form (1) in the
likelihood equations. Start with a table in which the nij for (i,j)

not in K are equal to their observed values, and the nij for (i,j) in



Table 1: Relationship between Respondents' Votes and Spouses' Votes
in 1968 Presidential Election.

Respondent's spouse vote

Nixon Humphrey Wallace

respondents Nixon 1586 117 49
vote Humphrey 103 1540 40
Wallace 34 17 359

K are equal to aiBj for some choice of a and B. Now, for each i,
multiply all elements nij’ with j € J(i), by a constant in such a way
that (la) is satisfied for row i. If this has been done for all i,
rows add up to the correct numbers, but columns will not. Repeat the
same procedure for columns. This will undo the correct sums of the
rows again, so we renormalize rows as in the next step. And so on,

until convergence.

In table 2 we have given iterations 0, 1, 5, 10 of this procedure,
together with the table to which it converges. In general convergence
is slow, but sure. The chi-square for quasi-independence is 2.53, with

one degree of freedom.

There is a second, somewhat less familiar, algorithm for computing the
maximum likelihood estimates. It iterates on the unrestricted or
unknown elements of the table, and not on the pairs (i,j) in K. We
start with a matrix R; in which the Ty for (i,j) in K are equal to
their observed values. The other r.. are arbitrary. We then iterate by
r(m+1) = r(m)r(m)/r(m) for all (i J') not in K. The r.. for (i,j) in K
ij it T4y T4t »J : ij »J
remain fixed at their observed values. Note that we use the subscript

+ here for sums over all indices in a row or column.

Table 3 gives selected iterates of this algorithm, together with the

point of convergence. Convergence of this method is about equally fast



Table 2: Selected iterations Table 3: Selected iterations

of off-diagonal algorithm of diagonal algorithm

iterate 0 iterate 0

1586.00 1.00 1.00 1586.00 117.00 49.00

1.00 1540.00 1.00 103.00 1540.00 40.00
1.00 1.00 359.00 34.00 17.00 359.00

iterate 1 iterate 1

1585.00 102.51 47.81 785.10 117.00 49.00
100.98 1540.00 41.19 103.00 732.73 40.00
36.02 31.49 359.00 34.00 17.00 47.77

iterate 5 iterate 5

1586.00 112.47 52.49 193.07 117.00 49.00
107.43 1540.00 36.51 103.00 113.90 40.00
29.57 21.53 359.00 34.00 17.00 7.19

iterate 10 iterate 10

1586.00 112.81 53.12 160.32 117.00 49.00
107.19 1540.00 35.88 103.00 76.96 40.00
29.81 21.19 359.00 34.00 17.00 9.84

optimum optimum

1586.00 112.83 53.17 159.04 117.00 49.00
107.17 1540.00 35.83 103.00 76.03 40.00
29.83 21.17 359.00 34.00 17.00 9.97

as that of the previous one, the program is somewhat simpler.
Convergence of both algorithms is proved easily by majorization
methods, such as those wused in proving convergence of the
EM-algorithm, together with general results on the uniqueness of the
maximum likelihood estimates (Haberman, 1974). It may not be apparent
from tables 1 and 2 that they converge to the same point, but we must
realize that table 1 computes the off-diagonal elements of aiBj while
table 2 computes the diagonal elements. Thus the ordinary chi-square

test for independence, applied to table 2, gives the value 2.53.

o



4. Correspondence analysis

What is it that we generalize? In order to discuss this properly, we

first define CA in terms of the Fisher-Lancaster decomposition of an

observed table. This is sometimes called the canonical analysis of a

contingency table (for instance in Kendall and Stuart, 1967, chapter

33), while the French call it the reconstitution formula. Suppose P is

the observed table, with entries that add up to one. The diagonal
matrix D contains row marginals, E contains the column margins, u is a
vector with all elements equal to one. Then we can find X and Y such
that u'DX = 0, uw'EY = 0, X'DX = I, Y'EY = I, and

(4) P = D(uu' + XQY')E,
with Q diagonal. The proof is simple. Let
=1 =1
(5) Z =D 2(P - Duu'E)E" %,

and suppose Z = KQL' is the singular value decomposition of Z. Let
X = D-%K and Y = E-%L. It is easy to show that (4) is satisfied. We
see, moreover, that the sum of squares of the elements of Q is equal
to the sum of squares of the elements of Z, which is Pearson's index
of mean square contingency. If P is based on a sample of size n, then
n times this coefficient of contingency is equal to the chi-square
statistic for testing independence. Thus we can say that CA, if
interpreted as computing the Fisher-Lancaster decomposition (4),

studies the deviations from the independence model.

In the introduction we said that CA gave a geometrical representation
of the residuals, in this case of the residuals from independence.
This can be explained most easily by introducing the

Benzécri-distances between the rows of P (Benzécri calls them the

chi-square distances). They are

> _ . in~lop=loin-1 _
(6) Gik = (ei ek) D "PE "P'D (ei ek),

where the e, and e, are unit vectors (with exactly one element +1, the

k
others zero). If we substitute (4) in (6) we find



(N Gik = (ei-ek)'(uu'+XQY')E(uu'+YQX')(ei-ek) =

= (ei-ek)'(uu'+XQZX’)(ei-ek)

= (;(l-ik)‘ (;(l—;(k) .

Here X and X are rows of X = XQ. We see that the Benzécri-distance
between rows i and j of P is equal to the ordinary Euclidean distance
between rows i and j of X. Thus we can represent the rows of i, and we
can approximate the Benzécri-distance by considering only the r
columns of X corresponding with the largest singular values. This
approximates the Benzécri-distances from below (De Leeuw & Meulman,
1985). It is clear that dually we can also define distances between
columns of P, and approximate them from below by ordinary Euclidean

distances between rows of Y = YQ.

For many applications having two separate plots, one for the rows and
one for the columns, is not very convenient. We would like to have a

joint plot or biplot (Gabriel, 1971). It is possible to plot both row

and column objects in a single plot by using the centroid principle.

From (3) we have
_1 _ =z
(8a) D "PY =X,
_1, _ 5
(8b) E "P'X = Y.

In (8a) we see that representing Y and X in a joint plot allows a
simple interpretation. The row points X are centroids (weighted
averages, conditional expectations) of the column points Y. In (8b) it
is the other way around. We already know, of course, that X and Y
approximate the Benzécri-distances from below. This is the basic
geometry of CA. There are two different joint plots (X,Y) and (X,?),
depending on the choice of the centroid principle (8a) and (8b). In
the first plot the row points are inside the convex hull of the column

points, in the second plot it is the other way around.

1 1
For reasons of symmetry some authors plot (XQ%,YQ?), but in this plot

there is no clear distance and centroid interpretation. We can say
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that in the symmetric interpretation we represent the residuals
D-lPE-l-uu' by scalar products between vectors. This interpretation
follows from (4) as well, but unfortunately most people find it

difficult to think in terms of scalar products.

In the French CA literature it is quite customary to make joint plots
of the pair (XQ,YQ) (Baccini, 1984). This has some rather serious
disadvantages, because distances between row- and column-points cannot
be interpreted in terms of the centroid principle. Moreover the inner
products of row- and column-vectors do not reproduce residuals any
more. There are also some advantages, mentioned for instance by
Israels (1985). Both the distances between different row-points and
the distances between different column-points approximate the
Benzécri-distances, while the distance of any point to the origin
approximates its contribution to the total inmertia (chi-square).
Although the choice of normalization can be quite important, it is not
really necessary to decide which one is the best. The important thing
is to realize that it is not possible to get all the desirable

geometric properties in one plot, so a choice is necessary.

We illustrate CA by analyzing a confusion matrix taken from Benzécri
(1970, p.9). It resulted from a learning experiment, in which subjects
had to learn to associate colours with keys of a piano. The data in

table 4 give the number of response confusions between the colours

Table 4: Confusion matrix between colour stimuli,

columns correst responses, rows actual responses.

RE OR YE Y6 GR BG BL VI

red 415 45 2 8 7 4 4 3
orange 32 373 16 17 8§ 11 12 8
yellow 10 12 343 70 22 20 13 10
yellow-green 6 19 50 303 31 23 18 6
green 6 12 23 36 305 71 29 8
blue-green 10 10 15 32 91 274 38 19
blue 8 11 14 6 17 60 356 36

violet 3 5 22 13 11 13 24 403
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Figure 1: CA of table 4

Row points; symmetric normalization
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(columns are correct responses, rows actual responses) in trial 20,
aggregated over subjects. Because of the learning effect the diagonal
of the table is very dominant. The chi-square is 12782.3. CA finds the
dominant singular values to be .87 and .79. The first two dimensions
account for 429 of chi-square. In figure 1 we have plotted XQ%, which
is virtually identical to YQgé in this example. It shows the colors in
their spectral order, along the familiar curved dimension sometimes
called the horse-shoe (Schriever, 1985, Heiser, 1986, Van
Rijckevorsel, 1985). Because of the strong diagonal dominance in this
example the singular values are not nicely separated, and a very large

part of the inertia remains unaccounted for.

5. Quasi-correspondence analysis

Now suppose P and Q are two contingency tables. We suppose P and Q

o
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have the same marginals, collected in the diagonal matrices D and E.
The interpretation we have in mind is to take P as the observed data
matrix and Q as the maximum likelihood estimates under
quasi-independence. The technique we discuss is somewhat more general,
however, because ( could also be maximum likelihood estimates under
models such as quasi-symmetry or the RC-model. This is discussed in
more detail in Van der Heijden and De Leeuw (1985), who also give
references to some of the relevant French literature. The idea of
using a model to generalize correspondence alaysis is due to Escofier

(1983, 1984).
If we start with the singular value decomposition
_1 1
(9) DTE(P-QE* = KAL',
we find, analoguous to (3), that
(10) P = Q + DXQY'E.

We loose the connection with chi-square, because the sum of squares of
the singular values is equal to

(11) ZZ(pij - qij)zldie

s

J

which is not the weighting of residuals we need for a chi-square

distribution. Nevertheless, we still decompose residuals, of course.

The interpretation in terms of Benzécri-distances can still be

maintained, because

(12) 62, = (e; = e )'D (P - QETI(® - QD (e; - €)=

= =iz =

(x; xj) (x, xj),
- -l

with X = D"2KQ, as before. The centroid principle occurs in a somewhat

different, but still geometrically very easily understood way. From

(10) we find
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(13a) D py - p”lgy =

<

-1 -

(13b) E-lp'x - E"lo'x

1
o

This makes it interesting to look at a joint plot which contains Y,
D_lPY, D-lQY, and X. Thus each row is represented by two centroids and

their difference.

It is clear from our results so far that if the quasi-independence
model fits well, then P - Q is small. Thus the singular values are
small, and X will be small. We can also say that if the model fits
well, then D-lPY and D_lQY will be very similar, and consequently X
will be small. This brings us back to the point mentioned in the
introduction: if the fit of the model is too good, then there will be
no interesting variation left for CA. Because structural zeros or
nonrestricted cells do not contribute to P - Q, this means that we

will need a fair percentage of restricted cells in the analysis.

By comparing (5) and (9), it is easy to see that one can find a
quasi-correspondence analysis solution using usual correspondence
analysis programs. All one has to do is to take the matrix (P-Qt+Duu'E)

as input matrix.

6. Alternative weighting schemes

In the previous section we have defined quasi-correspondence analysis
by using as diagonal weighting matrices D and E the observed marginals
of P and Q. This however, is not the only possible choice. There are

at least two alternatives.

As a second possibility we can define D and E by

2{p

(16a) d, , j e J(},

ij

(14b) e {p ie I()}.

ij

It is clear that this coincides with our previous definition of D and
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E in the case of structural zeros, but in general (14) will define
matrices with diagonal elements which are strictly smaller. Thus

singular values will be higher.

The third possibility is to choose dii equal to &i and ejj equal to

Bj' In this case the sum of squares of the singular values becomes

(15) 22{(p;; - 9;;)%/q;;  (1,3) e X},

which is, of course, the <chi-square statistic for testing
quasi-independence. This is a considerable advantage over other forms
of scaling. There is another advantage, which is somewhat less
obvious. Suppose R is the m?trix with L equal to P for all (i,j)
in X and with L equal to diBj for all (i,j) not in K. Thus R is the
matrix that the second maximum likelihood algorithm converges to. For
the presidential choice data R is given as the last matrix in table 3.
It is now not difficult to see that quasi-correspondence analysis of P
and Q, with weights d.. = &i and ey = Bj’ is identical to ordinary CA
of R. This alternative interpretation is quite useful, and does not

apply to the other normalizations.

For all three possibilities the matrices P and Q are, of course, the
same. Because (P ~ Q)u = 0 and (P' - Q')u = 0 it follows that E%u and
D%u are singular vectors corresponding with a singular value equal to
zero. Thus X and Y have one column equal to u, no matter how we choose
D and E, and all other columns satisfy u'Dx = u'Ey = 0. Moreover
formulas (12) and (13) do not depend on the choice of D and E and
remain valid. On the other hand, in case of the second scaling,
formula (13) cannot be interpreted in terms of centroids. But this is
easily remedied. If PO is P with all pij for which (i,j) is not in K
replaced by zero, and Q0 is defined in a similar way, then P - Q =
PO - Qp- Matrices D and E in the second scaling are the marginals of

PO and QO’ and thus (13) can be rewritten as
_1 -1 _ 3
(16a) D7'PGY - DTQ,Y = X,

(16b) E 'p.'X - E'lQO'x

t
sl

0
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These are the centroid principles for the second normalization. For
the third normalization both (13) and (16) are not centroids, and we
have to use yet another interpretation. Let § = Ruu'R/u'Ru. Thus S is
the matrix of expected values on the hypothesis of independence if R
are the observed values. Now R - S = P - Q, and D and E in this case

are the marginals of R and S. The centroid principle is now simply
_1 _ <
(17a) D "RY = X,
_1' _ =
(17p) E R'X = Y.

The centroid principle in this case shows why the third normalization
reduces to ordinary CA of R (compare formula 8). Thus it is possible
to perform quasi-correspondence analysis using a correspondence

analysis program, namely by using R as the input matrix.

Thus, from a mathematical point of view, all three normalizations have
their own centroid principles and Benzécri-distances. Normalization
three has the advantage of simplicity, and the advantage of the nice
relationship with the chi-square for quasi-independence. From the
interpretational point of view it is difficult to give convincing
reasons to prefer one normalization over another. Van der Heijden
(1985) discusses some considerations. In case of structural zeros, in
which the first two normalizations are identical, it seems not logical
to fill in the empty cells. Thus the third normalization does not seem
appropriate here. In case of data which are simply missing (but not
logically impossible) we could use normalization three, or its
generalizations which are discussed in the next section. In the case
in which all elements are observed, but the model is only fitted to a

subset, all three choices can be defended.

We 1illustrate the developments in this section by analyzing an
example. The presidential election data are not very suitable for
this, because almost no variation is left after the quasi-independence
model is fitted. The colour-confusion data are somewhat more promising

in this respect.

If we use the maximum likelihood algorithm to adjust diagonal
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elements, we find the following values. Red: 4.71, Orange: 10.92,
Yellow: 23.44, Yellow-Green: 29.29, Green-Blue: 51.29, Blue: 20.89,
Violet: 7.27. Thus colours at the end of the spectrum are confused a
great deal less that colours in the middle. The remaining chi-square
for quasi-independence is 656.64, with 41 degrees of freedom. Thus a
considerable amount of inertia is still left. The quasi-independence

model fits rather poorly.

Our first analysis is the quasi-correspondence analysis which uses the
marginals of the original, unadjusted table as weights D and E. Its
first two singular values are .14 and .11, explaining 61% of the total
inertia (which is not chi-square in this case!). In figure 2 we have
plotted X, normalized by X'DX = I. These are the scores for the actual
responses. In figure 3 we have plotted Y1 = E-lQ'X and Y2 = E-IP'X. We
know that Y = Y2 - Yl' Instead of plotting Y we have drawn arrows from

the points of Y1 to corresponding points of Y,. This also shows what ¥

2

Figure 2: QCA of table 4
Row points; normalization X'DX=I
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Figure 3: QCA of table 4
Points Y1 (small) and Y2 (large)
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looks like, because Y is obtained by translating all arrows to the
origin. The analysis shows the cluster structure
((OR,RE), (YE,YG)), (BL,BG,GR) in the residuals, with the residuals for
violet either very small or largely unexplained. Comparing X and Y
shows that green and blue-green residuals behave differently in rows

and columns.

The next analysis uses the third normalizatioh, i.e. it is a CA of R.
Figure 4 is a joint plot of (XQ%,YQ%), which could be called the
biplot or inmer product representation. In this plot there is no
direct interpretation in terms of Benzécri distances or in terms of
centroid principles. We see that the horse-shoe-representation of the
spectrum is still there. A dominant feature of the plot is the
interchanging of the positions of orange and red in the row and column
plots, indicating relatively large (orange,red) and (red,orange)
residuals with positive signs. Observe that the two orange vectors,

the two red vectors, and the two violet vectors are roughly



- 18 -

Figure 4: QCA of table 4
Row and column points, symmetric normalization

Third choice of weights
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orthogonal. This is only natural, because diagonal residuals are by
definition zero. The singular values are .43 and .33. They account for
60% of the inertia, which is the chi-square for quasi-independence in

this case.

7. Correspondence analysis for incomplete tables

A technique for CA of incomplete tables has been proposed by Nora
(1975). 1t is also discussed in Benzécri et al. (1980, Vol. 2, chapter
III, no. 8), and by Greenacre (1984, pp. 236-244). First choose the

dimensionality h. Then reconstitution of order h is the iterative

process

(18) r§?+1) = rgg)ri?) (1 + Zzzlwém)xgz)y§2))/r£$),
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which is applied for all (i,j) not in K. For (i,j) in K we simply set
(™o

1] 1]
choice of the dimensionality h. Benzécri himself seems to favor

for all m. The solution will, in general, depend on the

iterated reconstitution of order zero, i.e. for all (i,j) not in K we

set
(19) r§m+1) = rgg)rgm)/rgg).
J 1 J
This 1is, of course, exactly identical to one form of

quasi-correspondence analysis. Iteration (19) is the second algoritm
to compute maximum likelihood estimates. We have seen that it
converges to a matrix R, and that quasi-correspondence analysis with
the third choice of weights D and E is identical to CA of R. Thus, in
this sense, one particular form of quasi-correspondence analysis has
already been described in the literature as CA with iterative

reconstitution of order zero.

8. Examples

There are various ways in which possible examples could be
categorized. We have chosen for the categorization distinguishing
square matrices, where special attention has to be given to the
diagonal, vs. non-square matrices, where other cells seem to cause
problems. The square matrix we analyzed, a migration table, will be
discussed as an example of a case in which we are not interested in
some cells, i.e. the diagonal cells. Here diagonal {frequencies
indicate the number of migrations in which the subject moved but
remained in the same suburb of Paris. We refer to Van der Heijden
(1985,1986) for an analysis of a transition matrix containing
diagonal and off-diagonal structural zeros, and off-diagonal cells
which are ‘'eliminated' because they dominate the solution. Two
non-square examples are treated which are interesting for different
reasons. First we show the analysis of a triangular matrix, because it
is typical for a lot of applications. Secondly we discuss the analysis
of a flattened three-way matrix in which a triangle is deleted. In
this last example we indicate how QCA can be seen to be related to

loglinear models containing structural zeros, thereby generalizing
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results on relations between ordinary CA and loglinear analysis

reported by Van der Heijden & De Leeuw (1985).

Example 1: a migration table

Square matrices often provide us with a case in which the use of QCA
can be helpfull for the understanding of the structure of the
off-diagonal cells. CA is not appropriate here, because of the
diagonal cells: these are often not defined, as might be the case in
transition matrices and import-export tables, or they are not the
primary point of interest, such as in confusion matrices, migration
tables, etc. In the French literature CA of import-export and related
tables has been given considerable attention. An import-export table
is a square matrix with importing areas for the rows, and exporting
areas for the columns. The diagonal elements are either very high
(being the trade in that area), or not defined. Various proposals are
made to fill in values for the diagonal cells, to make it possible to
analyze this type of matrix with CA. Burtchy (1984) reviews the
various approaches that have been used in combination with CA. They
either replace the diagonal with values chosen on theoretical grounds,
or they adjust the diagonal (Stemmelen, 1977), or they complete the
diagonal by iterative reconstitution. Burtchy has many additional
references on adjusting and completing input-output table (see also Le
Foll & Burtchy, 1983). The approach proposed by Burtchy to complete
the diagonal by iterative reconstitution (compare section 7, and also
Greenacre, 1984, ch. 8) is criticized by Foucart (1985) because this
method produces modified margins, and therefore modified weights, for
which there is no substantial justification. Foucart proposes to
modify the diagonal elements of the matrix, and subsequently analyse
the symmetricized matrix (pij+Pji) and plot the rows and column of pij

as passive points in the resulting solution.

Of a different nature is the proposal of Escofier (1984), who
decomposes the departure from models using her generalization of CA.
In these models the expected diagonal elements are equal to observed
diagonal elements. However, her proposal has the drawback that the
margins of the observed and expected frequencies are not equal (see
Van der Heijden & De Leeuw, 1985, for a discussion of these

drawbacks).

w
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As before, we will study the decomposition of the departure from

i and for
the off-diagonal cells nij:aiBj’ Compared with Foucart, our way of

quasi-independence. For the diagonal cells we take pij =n

dealing with the analysis of square matrices has the advantage that we
do not have to fill in some artificial values for the diagonal cells.
Compared with Escofier, in our case the marginal frequencies of the

observed and expected frequencies are equal.

Figure 5: QCA of table 5, dimension 1 and 2
Second choice of weights (compare section 6)
Singular values .658 (.35), .467 (.18), .384 (.12), .364 (.11)
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Table 5: Migration in the suburbs of Paris; rows are destinations, columns are origins.

CHA IVR KRE GEN VIT ALF CHO BON VAL ORL RUN FRE THI JoI  SUC
Charenton 6238 269 45 14 204 824 57 250 70 76 16 36 0 403 189
Ivry 270 11268 1113 1113 257 2483 530 708 166 878 166 205 281 457 174
Kremlin 34 585 11353 1001 1493 32 143 62 133 207 327 549 226 133 0
Gentilly 0 106 1389 10695 425 100 99 220 27 111 215 1037 26 152 117
Vitry 186 667 894 281 11263 1009 1577 148 123 1021 154 265 860 314 90
Alfort 713 258 134 75 632 16420 595 1675 563 250 29 0 118 507 297
Choisy 0 181 78 41 763 148 5590 24 396 964 104 38 745 25 87
Bonneuil 51 81 68 0 133 1094 109 9235 107 92 0 28 39 1831 491
Valenton 31 34 34 28 34 316 271 148 6161 628 0 0 59 83 228
Orly 14 108 492 177 353 104 528 209 568 6461 315 408 551 191 130
Rungis 0 21 160 83 81 33 23 20 64 248 1455 110 106 21 0
Fresnes 0 53 310 260 156 0 0 0 0 82 481 3889 131 0 0
Thiais 0 66 21 0 151 40 421 24 43 248 26 0 1498 25 0
Joinville 327 43 0 63 206 801 42 1362 0 40 54 90 35 17045 774
Sucy 0 0 0 26 26 20 28 159 591 102 0 0 0 403 5624
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As an example we show the analysis of a migration table published in
Foucart (1985) (see table 5). In a cell of this matrix a frequency
gives the number of persons which have moved from one suburb of Paris
to another. As weights we have taken the sum of the off-diagonal
frequencies, so the diagonal frequencies are neglected completely.
Furthermore, a point represents the difference between the profiles of
the off-diagonal cells in pij and nij'

The first four singular values, with their proportion of the total

Figure 6: QCA of table 5, dimension 3 and 4

Second choice of weights (compare section 6)
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inertia (which is not chi-square), are .658 (.348), .467 (.176), .384
(.118), and .364 (.107). .749 of the total inertia is decomposed in
the first four dimensions, which is 7% more compared with Foucalt. A
plot of the first two dimensions is shown in figure 5. A
horse-shoe-like curve can be seen, with JOI, BON, CHA, ALF and SUC on
the left, going to KRE, GEN, RUN, and FRE on the right. Foucarts plot
is about the same. However, in his plot distances between
corresponding 'migration to' (large point) and 'migration from' (small

point) suburbs are much smaller.

In figure 6 we see the third and fourth dimension. Interpreting the
elements with the larger contributions to these dimensions, we trace
some asymmetries between suburbs on the left part of the first
dimension: BON to ALF happens more then ALF to BON; VAL to SUC more
then SUC to VAL; ALF to IVR more then IVR to ALF, etc. Migrations in
the pairs BON-JOI, CHA-ALF and CHA-JOI seem equally strong. Also, from
points lying far apart, we can conclude that CHA to SUC happens more
then SUC to CHA, SUC to BON occurs more, and ALF to IVR happens more

than the reverse.

Example 2: whorls vs. small loops

CA of triangular matrices is not meaningfull. However, QCA, where the
quasi-independence model is fitted to the non-missing values, can be
helpfull here to obtain an interpretable plot. To show this, we
discuss the analysis of the a triangular matrix taken from Goodman
(1968). The matrix is shown in table 6. In each cell two values can be
found: the observed frequency and the expected frequency, following
the quasi-independence model. In the rows we find the number of
whorls, in the columns the number of small loops in finger prints of
the right hand. Since the sum of these two numbers cannot exceed 5,

the lower triangle of this matrix is void.

Comparing profiles does not seem useful here, since the number of
cells for each line is unequal. Therefore we have taken the values a;
and Bj as weights. The four singular values are .365 (.64), .239 (.27)
.108 (.06) and .087 (.04). The first two dimensions are shown in

figure 7. (The points for 5 whorls and 5 small loops are not shown,
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Table 6: Number of whorls vs. number of small loops
Observed and expected frequencies (between brackets)

Expected frequecies rounded to integers.

Small Loops

0 1 2 3 4 5

Whorls 0 78 144 204 201 179 45
(201)  (167)  (167) (150) (131)  (45)

1 106 153 126 80 32 0
(122)  (102) (101)  (92)  (80) (0)

2 130 92 55 15 0 0
(86)  (71)  (71)  (64) (0) (0)

3 125 38 7 0 0 -0
(64)  (53)  (53) (0) (0) (0)

4 104 26 0 0 0 0
(11 (59) (0) ) (0 (0)

5 50 0

0 0 0 0
(50) (0) (0) (0) (0) (0)

because for all cells of these lines pij=n , and so there is no

ij
difference to be decomposed). Interpretation will be clear: 0 whorls
occur more often then expected with 2 or 3 small loops and the other
way around. The location of the other points should be interpreted in

the same way.

Example 3: Current age x age at first marriage: structural zeros

The third example we will discuss is taken from Haberman (1979, pp.
455-471). There are three variables: age at first marriage, current
age, and sex. We deal with structural zeros since the age at first
marriage cannot exceed the current age. Therefore, these two variables
are related in a trivial way. To investigate whether there is any
other relationship, we fitted a quasi-independence model to the data,
defining all cells for which current age is smaller than the age at

first marriage as structural zeros.

For the moment we decided that the first-order interaction between
current age (C) and sex (S) did not interest us, therefore we treated

the three-way table as a two-way table of rank 4x16. See table 7. The



Figure 7: QCA of table 6, dimension 1 and 2
Third choice of weights (compare section 6)
Singular values .365 (.64), .239 (.27), .108 (.06), .087 (.04)
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chi-squared value equals 245. Fitting a quasi-independence models to

this two-way table comes to the same as fitting the loglinear model

[A][CS] (including structural zeros) to the three-way table. Therefore

the correct number of degrees of freedom is 33: the difference between

the observed and expected frequencies is significant. We use QCA to

decompose the departure from model [A][CS] (compare Van der Heijden &

De Leeuw, 1985, in which it was shown that classical CA decomposes the

departure from the loglinear model [A][CS] in case it did not contain

structural zeros.).



- 27 -

Table 7: Age at first marriage x current age X sex
observed and expected frequencies for
quasi-independence model

Current Age at first marriage

age
£20 21-25 26-30 231

<20 9 - - -
9) - - -
21-25 43 20 - -
(32) (31) - -
26-30 51 40 3 -
Female (41) (41) (12) -
31-40 103 53 4 1
(65) (64) (19) (12)
41-50 68 45 5 3
(49) (48) (14) 9)
51-60 65 43 7 9
(50) (50) (15) (10)
61-70 39 24 12 4
(32) (32) (9) (6)
271 22 26 7 4
(24) (24) (7N (5)
£20 2 - - -
(2) - - -
21-25 24 23 - -
(24) (23) - -
26-30 21 34 3 -
(26) (25) (8) -
Male 31-40 30 61 10 4
(43) (42) (13) (8)
41-50 22 49 20 10
(40) (40) (12) (8)
51-60 19 50 27 15
(45) (44) (13) (9)
61-70 16 38 23 17
(38) (38) (11) (7)

271 11 19 19

11
(24) (24) (7) (5)

Figure 8 shows the category quantifications for the first dimension,
in which 81% of the total inertia is decomposed (a two-dimensional
plot shows the well-known horse-shoe). We have taken row and column

margins as weights, so that a point represents the difference between
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Figure 8: QCA of table 7, original category numbers vs. first
quantifications. First choice of weights (is equal to second choice
here). Current age-line is solid, age at first marriage-categories are
dotted lines. Singular values .408 (.81), .174 (.15), .089 (.039)
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the profile in the matrix of the observed and the matrix of expected
frequencies. Column points for age younger than 20 are given
quantification 0, since for these profiles the observed frequencies
are equal to the expected frequencies for all cells. The plot shows us
that men marry more than expected at an age older than 25, while women
marry more than expected when they are younger than 25. Furthermore,
the older the male respondent is, the higher the probability that he
is married for the first time at an age older than 25; the women line
shows a dip: female respondents of an age from younger than 20 to
31-41 married more often than expected when they are younger then 20,

and for older respondents this relation becomes weaker.

Conclusion

Quasi-correspondence analysis seems to be a good alternative to
correspondence analysis in all cases where the study of departure from
quasi-independence seems more logical, or appropriate than from
independence. It was shown that quasi-correspondence analysis is a
very versatile technique: firstly, given a cross-table, it is possible
to construct several quasi-independence models; secondly, there is
more than one alternative for the choice of weights. Important for the
applicability of quasi-correspondence analysis is that all forms can
be performed using computer programs for ordinary correspondence
analysis. The user should first estimate expected frequencies, and
subsequently construct the proper input matrix for the correspondence

analysis program.

-
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