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1. Introduction

Event history data are data specifying the sequence and times in which objects or individuals
are in specific states (categories) during some period of time, where the number of states is finite.
These data are collected in for example sociology, anthropology, ethology and psychology in studies
concerning the use of time by humans and non-humans. For each specific time point, the state each
object is in can be derived from event history data. Theoretically we are working in continuous time,
and the number of time-points during some time-period goes to infinity. In practice, however, time is
always measured in discrete units (for example months, days, minutes), and thus the situation
simplifies for data analysis purposes. Aggregated forms of event history data are also known as
time-budget data, or time-allocation data.

In sociology data are often collected in the form of diaries. A very valuable review of
contemporary model-based data analysis techniques for the analysis of diaries and other 'social
dynamics' data is Tuma and Hannan (1984). These techniques require a great deal of prior
knowledge, and can be applied only in a fairly restrictive class of situations (very many observations,
and only very few states).

In ethology attention for time allocation seems to be growing. We mention here Bernstein(1972),
Barash (1974), Barnard et al. (1984), Boy & Duncan (1979), Duncan (1980, 1985) and Arnold and
Trillmich (1985) as examples. It will be clear that, unlike in sociology, it is impossible to work with
diaries in ethology; the behavior is observed by the researcher. From a methodological point of view
applications in ethology are somewhat special, because ethologists have a lot of freedom to choose
their population samples and time samples. There are virtually no limits on the availability and the
cooperativeness of sticklebacks and wolf spiders. A comparison of the different time sampling
methods used by ethologists is given by Altman (1974) and Slater (1973).

In anthropology time allocation studies also seem to become more popular. In a recent paper
Gross (1984) reviews the use of time allocation methods in anthropology. In studies using time
allocation methods the investigators collect information on how the individuals in a community or
group spend their time. Gross reviews many applications of time allocation studies, and comments
extensively on their practical usefulness and their methodological aspects. His conclusion is worth
repeating. "Time allocation techniques comprise a valuable tool for recording and analyzing human
behavior in a natural context. The power and usefulness of time allocation techniques have been
demonstrated in village level studies and national and international samples. There are still many
problems to be solved to achieve maximum efficiency, accuracy, and comparability of data sets.”
(Gross, 1984, p. 548). Gross compares these various methods in terms of their usefulness for

anthropologists, who obviously have to deal with practical constraints that are quite different from
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those of ethologists. It appears from Gross' evaluation that the random spot check method is the
preferable one. The studies of Erasmus (1955) and Johnson (1975) are given as major examples of
this approach.

In spot check methods investigators take 'snapshot-like' recordings of behavior. The idea is
that, if a person is baking bread 7 times out of 100 times that we have made a spot-check of his home,
then we assume that he spends approximately 7% of his time baking bread. Clearly there are various
practical and theoretical limitations to this method, which almost immediately come to mind. They are
discussed in detail by Gross (1985, p. 537-546), but they do not alter the final conclusion about the
usefulness of the method. There is an appealing modern illustration of the method in Gross et al.
(1985). Behavior was sampled, between 6:00 A.M. and 8:00 P.M., in four different South American
Indian Villages, located in Central Brazil. We shall use this example to illustrate possible analytic
techniques for spot-check (and other time allocation) data.

2. Ways to analyze time-budget data

If we look at the ways time allocation data are usually analyzed, we find mostly purely
descriptive and tabulatory techniques. In his review paper Gross (1984, p. 546-548) also has no
suggestions about how one should proceed beyond the purely descriptive point. There are much more
specific proposals for the analysis of time budgets in the publications of the group involved in the
Multinational Time Budget Project (Szalai, 1972). Converse (1972) pioneered the use of multivariate
analysis techniques on such data, and this was subsequently taken up by Clark et al. (1982), Harvey
et al. (1984). The multivariate analysis techniques that are used, however, are standard packaged
techniques that do not take special properties of time allocation data into account. This makes their use
tentative, at best.

As an example in the context of the Multinational Time Budget Project, Stone (1972) used
Smallest Space Analysis, a multidimensional scaling technique, in order to obtain a multidimensional
representation of the 15 cities taking part in the project. In order to be able to do this, he computed
similarity measures between the cities on the basis of their time budgets. Other similarity measures are
to be found in Harvey (1984). These measures emphasize the differences between the better filled
categories. This will often be a drawback, especially when we are also interested in differences in the
smaller categories.

Another proposal for the analysis of time-budget data is to use correspondence analysis (Gifi,
1981; Greenacre, 1984). Correspondence analysis can be described as a technique with which a
geometrical representation of rows and columns can be obtained. Distances between either rows or

columns approximate chi-square distances in Euclidean space. Chi-square distances correct for



different margins of the categories, and therefore solutions are not necessarily dominated by the better
filled categories. The number of applications of correspondence analysis is growing in the context of
time-budget data. Some references are Deville and Saporta (1983), Duncan (1985), De Leeuw et al.
(1985), and Van der Heijden (1987). Jambu and Lebeaux (1983) use a data set from the Multinational
Time Budget Project as one of the examples throughout their book.

Although correspondence analysis seems to provide us with an appropriate measure for
differences between time budgets, one important problem is not solved. Clark et al. (1982) formulate
this as follows: "Multivariate techniques are very ill-suited to serve as communications devices
between the community of scientific researchers and the larger society. Indeed, the techniques are not
even particular appropriate for communicating ideas within many parts of the scientific community."
(Lc., p. 69). In this paper we shall discuss a special purpose multivariate technique for the analysis of
spot-check and other time-budget data. It is our opinion that the type of representation derived by this
technique can be communicated very well, both inside and outside the scientific community. The
representations are much more economical than long lists of tables or descriptive diagrams, and they
emphasize the most important variation in the data. Thus we circumvent at least some of the
disadvantages of tabular analysis (Hirshi and Selvin, 1973; Gifi, 1981). We hope to illustrate the
successfulness of our technique by analyzing the example presented by Gross et al. (1985). We will

compare this technique with correspondence analysis, both theoretically as well as empirically.

3. A latent time-budget model

Suppose an individual or group is engaged, during a period T, in any one of m different
activities. The basic data in this paper are measurements of the distribution of time over the different
activities. It is the business of the scientist to define, as carefully as possible, the population of
individuals he is interested in, the period over which he intends to study his population, and the
classification of activities he intends to use. Compare Gross (1984, p. 537-546), for instance, for
considerations which must be taken into account in anthropology. Of course the classification of the
possible activities also plays a major role in the design of time budget studies in other fields.

The type of data that we consider in this paper does not take the time of day into account. In
anthopological terms it cannot give us the 'texture of the day' of the various groups or individuals in
the study, it can only provide us with an idea how the various activities are distributed over
individuals or groups. If the groups are men and women in a particular culture, for instance, we can
see which activities belong to the task of the typical woman, and which to the task of the typical
man,but we cannot see how the available time is used to plan and execute activities. This format is
used in the older time-budget studies, comparing unmarried women in Yugoslavia with married men



in the U.S.A., and so on. Groups are defined by crossing properties such as sex, country, and
marital status. In the anthropological example that we shall use, the groups are obtained by crossing
the societies of the Mekranoti, Xavante, Kanela, and Bororo Indians with the age-sex variable adult
males, adult females, and juveniles under 15. Thus their are twelve groups.

Another piece of information that we loose if we go from event history to time budget data is the
sequence of activities. We aggregate over time, and the sequence, or the count of the transitions,
simply gets lost. Thus event history data are inherently richer, but this is also their weakness. As
always rich data structures can easily lead to many empty cells, and to overparametrization. For this
reason the time budgets, which are as it were a marginal of the event history data matrix, are more
robust data.

The data can be collected in an n x m matrix, where n is the number of groups or individuals
and m the number of activities. The en&ies of the matrix are integers ny, which is the number of
individuals in group i that were engaged in activity j during random spot-checks, or the number of
times individual i was observed doing j. The total number of spot-checks for row i is n;,, which is
supposed to be a fixed number, determined by the design of the experiment. We have decided,
beforehand, that we are going to check in on the Mekranoti families, say, 75 times. Because the
family sizes are fixed during the experiment, this means, for example, that we have 18 x 75
observations on adult males, and 94 x 75 observations on juveniles. Of course it is possible that
various things go wrong during the experiment (people may be out hunting, persons may die, and so
on), but this does not change the fact that essentially the n;, are fixed. But the n;; are a different
matter. They are the outcomes of the experiment, and it is best to conceptualize them as random
variables. If we repeat the experiment, with the same n;,, we shall undoubtedly find somewhat
different ny;. It is clear that p;; = njy/n;, can be used as an estimate of m;;, the proportion of time spent
by a typical member of group i on activity j, or the proportion of time spent by the individual i at
activity jon atypical day.

If we assume independence between observations the n; in row i are multinomially distributed
with means E(n;;) = n;,7;;. A first result that interests us, as a sort of baseline, is whether the m;; are
different for the different groups. Of course we expect that they will be very different indeed,
otherwise our categories of behavior or our groups of individuals must have been defined in a rather
uninteresting way. The usual test for equi-distribution in a rectangular table is the chi-square test.

Here we discuss a model for the analysis of time budgets, which can be considered to be a
specially adapted form of factor analysis. We assume that the equidistribution model is untenable, and

we analyze the difference in the distributions for the various i. Remember that the theoretical time



budgets are given by =
model is

ijp Wherei=1,..,n,j=1,.., m, and where Z1; n; = 1 for all i. The

5 =Zk1 Bt M

with restrictions By 2 0, o 2 0, and P By = 1 = ZjL, 0. The number of degrees of freedom

can be computed as the number of independent cells minus the number of independent parameters,
being n(m - 1) - {p(m - 1) + (p - 1)n}. This model can be interpreted as a model describing how a
theoretical time budget in row i is the result of p latent time budgets, given by o, on which it
'loads'. Each theoretical as well as each latent time budget sums to 1. Values By, show for which

proportions the theoretical time budget of row i is made up from latent time budget k. The number of
latent time budgets has to be specified by the researcher. In case of p = 1, model (1) is equal to the
usual independence model, having n(m - 1) - (m - 1) = (n - 1)(m - 1) degrees of freedom.

In case we postulate that our time budgets are sampled under a product multinomial distribution,
maximum likelihood estimation can be accomplished using the EM algorithm (Dempster, Laird, and
Rubin, 1977).

Maximum likelihood estimation
The logarithm of the likelihood is, except for an irrelevant constant,
t(a,B) = Zi“=12}“=1 nij In Zf(’:l Bikajk. V)]

This must be maximized over the unknowns, with restrictions By 20, ot 20, and Z_; By = 1 =
Z7%; o We present an elementary derivation of an EM-type algorithm for this problem.

Suppose B, and L are the current best estimates at some point during the iterations of the
algorithm, giving theoretical values g;; according to (1). Also define nyy = 0y B/ We use the
notational convention of replacing an index over which we have summed by a plus. Observe that n;;,

=n;;, and the ny can be seen as distributing the observed budgets over the p dimensions.

Theorem 1. Consider the algorithm which computes updates by the rules a}k =n,/n, and B =
;,4/0;,4. Then L(atfH = L(@.B).



Proof. From the concavity of the logarithm,

In my/m; = In (25 B (0 Pin/einBiud/E;) 2

2 (Zf; oBix In(oBin/auuBin) }/ e )
Substitution in (2), using (3), gives

L(a,B) 2 L (eB) + (o, B, B), 4
where

9(o,B.2.8) = T Z 2Ry In 0By - ZE 211 2Ry mygi 1n @By )

Moreover (4) is an equality if (o,,B) = (@.B). It is easy to see that we find (or*,p"), the successor of
(.B), by maximizing d(o.,B,e.B) over (a,B). Thus

Lot 2 L@p) + I prap 2
28(p) + d(aB.ap) = L) (6)

QED.

Thus the algorithm increases the likelihood in each step. In fact if we build in the rule that the
algorithm stops if (a.,8) already maximizes 9(c,B,0.8), then either the algorithm stops at a stationary
point where the likelihood equations are satisfied, or it generates an infinite sequence for which the
increase in the likelihood is strict. The sequence of solutions that is computed has accumulation
points, because the restrictions define a compact set, and each accumulation point has the same value
of the likelihood and satisfies the likelihood equations. This means that we can say for all practical
purposes that the algorithm converges.

The stationary points of the algorithm have an interesting property, which we prove next. It
turns out that the matrices of observed and expected values have the same marginals. This is obvious

for the row marginals, but for the columns the situation is a bit more complex.



Theorem 2. At a stationary point Z{_; n;,m;; = n,;.
Proof. At a stationary point of the algorithm we have
I (ny/mpog = ny,, (7a)
Il (yf/mpBac = Mo (7b)
with p, Lagrange multipliers. If we multiply both sides of (7b) by oy, and sum over k, we find

D= b2} MOk 8)

If we multiply both sides of (7b) by O, Sum over j» and use (7a), we find

Zi 0B = My ®
Now multiply both sides of (9) by o, and sum over k. This gives, using ®),

Zi) njm = TRy Pyl = N0 (10)
QED.

After the maximization of the likelihood is carried out, the difference between the observed and
expected time budgets can be tested using chi-square statistics. However, this test could be
problematic, since the asymptotic distribution only holds if in a specific time budget each observation
has the same theoretical distribution, and subsequent observations are independent. The latter
assumption will often be violated because activities of different objects will not be independent: for
example, a mother is cooking, the child helps her. This dependence can be taken care of, for instance
by noting only the behavior of one of the objects, for example, the mother. We find another type of
violation in case the ny; are derived from event histories, and a frequency corresponds to for example
a minute spent on some activity. Clearly activities often take longer than a minute, and in this case the
dependence of subsequent observations is considerable. So in this situation model (1) should only be

used as a descriptive tool. However, violation of this assumption does not have to be severe in case



of data sampling using the random spot check method discussed in the introduction. Here, by making
the intervals between subsequent spot checks large, the dependence between the observations can
probably be made small. So in this situation, model (1) can be used for inferential purposes.

The objective of the latent budget model will be clear: it aims at a sparse description of the data in
terms of typical time budgets, provided by oy Values Bix show how (groups of) objects load on
these typical time budgets. Model (1) seems to be very well suited for the analysis of time budgets
due to its restrictions that loadings By, and estimated proportions o should be larger than zero and
add up to one over time budgets and categories, respectively.

It is quite easy to give a generalization of model (1) to aggregated event histories. Consider for
instance theoretical event histories m;, where t denotes time periods. We assume Il me = 1, so for
each time period t we have theoretical time budgets indexed by i which sum to 1. Now a possible

generalization of (1) is
T = 201 Bixjiicr an

with restrictions By 20, oy 20, and By By = 1 = Z]1; oy Model (11) specifies that group or
object i has k aggregated latent event histories, where the k'th latent event history is built up of
different latent time budgets for each t. Such a model will often be reasonable, because in most
applications it will be probable that in different time periods the latent time budgets differ. So for some
k, values oy, will provide us with an aggregated latent event history. Of course, the remarks made
above for the points of inference and description also hold here: actually model (11) can only be used
for inferential purposes in case the data are sampled using the random spot check method, where
observations are made as much as possible at distinct times, so that the dependence of observations

becomes negligible.

4. Relations with correspondence analysis

The resemblance between the latent budget model and correspondence analysis is large, in the
sense that the approximation of T;; provided by a t-dimensional correspondence analysis solution will
be often about the same as the approximation provided by the model in case of (t + 1) latent time
budgets. Intuitively this can be made clear by realizing that in a two-dimensional correspondence
analysis plot the location of each profile point (observed time budget) can be expressed as a weighted
average of three typical time budgets placed at the periphery of the cloud of profile points. Another



way to make this clear is by comparing model (1) with the model fitted by correspondence analysis,

which is

= mm (1 + Xy ricihy), o

where s is an index for the dimension. Of course correspondence analysis is usually presented as a
geometric technique, without any model being involved. But the interpretation of the technique as a
method to fit model (12) is valuable as well (Goodman, 1985).

In case t = 0, and p = 1, the approximation of both model (1) and (12) is equal to the
independence model approximation. In case of t = 1 and p = 2, (1) as well as (12) approximate m;;
using the sum of two products of a row term and a column term. In general, in case of t =q and p =
(q + 1), both in (1) and (12) m;; is approximated using the sum of q + 1 products of a row and a

column term. Although the approximations given by (1) and (12) are often about the same, this is not

necessarily the case. First of all this is due to the fact that the restrictions on parameters B, and oy
are different from those on the scores r;; and c;;. Secondly, in case of model (1), maximizing the

likelihood is asymptotically equivalent to minimizing the value of the chi-square statistic

S =, B 4 (py - )Y 1 (132)

Thus the estimates computed by the EM-algorithm are efficient if the model is true. This is not the

case for correspondence analysis, where

S=n,, 2 =1z}n=1 (py- nij)Z/ (PisP4) (13b)

is minimized.

The fact that approximations (1) and (12) are nearly the same for this example (although scores
r;s and c; are quite different from By and ay for all k and s) can further be illustrated when we use
the generalization of correspondence analysis proposed by Escofier (1983), see also Van der Heijden
& De Leeuw (1985), Van der Heijden (1987). This generalization of correspondence analysis can be

written in model form as

Ty = ETJ + 7‘:i.n:.jz';:l(l'iscjsks), (14)



where E)j is the expected frequency for cell (i,j) under some model. The generalization is particulary
attractive from a data analysis point of view in case p;, = T2, and Ps+= ﬂj. If the model is (1), then

in Theorem 2 it was shown that, due to ML-estimation, indeed p;, = Tfi),, and p,; = ﬁij.

S An example

Gross et al. (1985) recently presented an analysis of random spot check data (compare the
introduction) of males, females and kids in four tribes of Amazone Indians. They showed 12 figures
(one for each of the three types of persons in each of the four tribes). In these figures for 7 two-hour
periods 7 vertical bars display the proportion of time spent in 6 behavior categories, by subdividing
each bar into six parts (one part for each category), the length of which represents the proportion of
time spent into some category. By measuring the proportions in these bars we could derive a data

block with elements n;;, representing the proportion of time that group i spends in category j in time

ijt
period t. The tribes are the Mekranoti, the Kanela, the Bororo and the Xavante. The six behavior
states are 'idle', 'sleep’, 'care’, 'nonsubst’, 'domestic' and 'wild'. For a description of these tribes
and a definition of behaviors we refer to Gross et al. (1979, 1985) and Wermer et al. (1979). The
seven two-hour periods start at 6 A.M. and end at 8 P.M. In our analyses we will add up over the
time-periods, in order to facilitate the interpretation. However, as discussed above, this is by no
means necessary from a methodological point of view. We will analyze the data matrix, in which the
tribes are coded interactively with the types (males, females, kids).

In Table 1 we find estimates for the independence model (row and column margins) in the first
column. Table 1 also shows we find the estimates of By and o for the model with two latent
budgets (columns 2 and 3), and for the mode! with three latent budgets (columns 4, 5, and 6).
Considering the results for p = 2, we see that the first latent budget is the budget for the adults (for the
females predominantly), being less idle and asleep than the marginal time budget, but performing
more 'care’, 'nonsubst' and 'wild' behavior; the second latent budget is that for the kids, being more
idle and asleep, and doing the other behaviors less. Columns 4, 5, and 6 show us results for model
(1) with p = 3 latent budgets. These latent budgets correspond roughly with the three types of
persons, namely the males, the kids and the females respectively.

Because the raw data were not available, we could only compute chi-square measures over the
proportions. For the proportions these measures are 2.52 for p = 1 (df is 55), .96 for p = 2 (df is 38)
and .37 for p = 3 (df is 21). Consider the case that for each row n;, = 50, then the chi-squares are

124, 46 and 18 respectively. Comparing these chi-squares with the number of degrees of freedom



shows that we cannot conclude for these data that more than three latent time-budgets are necessary to
‘explain’ the data.

The sihgular values from correspondence analysis are .355, .224, .155, .068, and .039, which
explain 61%, 24%, 12%, 2%, and 1% of the total inertia. The first two dimensions of the solution are
shown in Figure 1. Not surprisingly, we see again the three clusters of males, females, and kids.

We can now also use (14) to decompose residuals from model (1) for different numbers of
latent time-budgets p. In case of p = 2, we find singular values .230, .155, .070, .047 and .016; in
case of p = 3 these values become .155, .069, .044, .019, .016. This illustrates that for this example
approximation (1) in case of p, is about equal to approximation (12) in case of t=p - 1.

6 Conclusion and discussion

We have illustrated the latent time budget model, and compared it with correspondence analysis
results. We think we can conclude that the model might be useful as a descriptive tool in case it makes
sense to think that the observed time budgets are generated by some typical latent ones. This was the
case in the example shown. In principle the model can also be used for inferential purposes, whereas
correspondence analysis does not (directly) provide this possibility. On the other hand,
correspondence analysis provides us with plots that allow a fast interpretation.

Another aspect in comparing correspondence analysis and these models is the following. The
latter are perhaps easier to explain to lay men, as a method for finding "typical” time-budgets. On the
other hand, it will sometimes be somewhat artificial to think of the observed time budgets as stemming
from typical ones, although it was certainly useful here, because the first two dimensions of
correspondence analysis showed three clusters of time-budget points. The EM-algorithm for the time
budget model can, in many cases, be considered as a form of correspondence analysis in which the
dimensions are rotated in such a way that an interpretation in terms of latent budgets becomes

possible.
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Table 1: Parameter estimates for the time-budget model, for different values of p.

Table 1a: Budget weights, rowwise.

=1 p=2 p=3
k=1 k=1 k=2 k=1 k=2 k=3
Mekranoti M 1.000 763 .237 107 832 .061
F 1.000 725 275 253 .109 .638
K 1.000 054 .946 876 .084 .040
Kanela M 1.000 558 442 346 448 .206
F 1.000 782 218 220 .019 761
K 1.000 038 962 929 .009 .063
Bororo M 1.000 458 542 363 625 012
F 1.000 .828 172 146 207 .647
K 1.000 .108 .892 783 200 .017
Xavente M 1.000 331 .669 520 457 .024
F 1.000 982 .018 002 216 783
K 1.000 134 .866 799 .110 .091

Table 1b: latent budgets, columnwise.

Idle .594 391 781 817 437 391
Sleep .060 .031 .087 095 032 .034
Care 032 .068 .000 000 .000 116
Nonsubst 174 338 .023 005 271 .348
Domestic 093 105 .081 080 .096 110
wild 047 067 .028 003 .163 .000
Fit: 2.519 963 370

Df: 55 38 21

Chi-square (n;, = 50) 124 46 18




Figure 1: Activities (6) are large, Tribes x Type of person are sma’!
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