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Time-budgets summarize how the time of objects is distributed over a number
of categories. Usually they are collected in object by category matrices with the
property that rows of this data matrix add up to one. In this paper we discuss
a model for the analysis of time-budgets that used this property. The model
approximates the observed time-budgasts by weighted sums of a number of
latent time-budgets. These latent time-budgets determine the behavior of all
objects. Special attention is given to the identification of the model. The model
is compared with logcontrast principal component analysis.
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1. INTRODUCTION

Time-budgets can be collected if one is interested in the way in which the time
of objects (for example, persons, animals, countries) is distributed over a
number of distinct, non-overlapping activities. This type of information can be
collected in a two-way matrix, with objects in the rows and activities in the
columns. In a cell we find the proportion of time that a specific object has
spent on a specific activity. Each row of this matrix adds up to 1.

In table 1 we find an example of a matrix with time-budget data. The data
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are derived from GROss et al. (1985) and were analyzed earlier by the DE
Leeuw and vaN DER HeupenN (1988) and vaN DER HEUDEN (1987). The
objects are males, females and children of four Indian tribes from the Ama-
zone. The tribes are the Mekranoti, the Kanela, the Bororo and the Xavente.
Six activities were recorded between 6.00 A M. and 8.00 P.M., namely ‘being
idle’, ‘sleeping’, ‘caring’, ‘nonsubsistence behavior’, ‘domestic activities’ and the
activity ‘wild’ (hunting, fishing, gathering). For more details on the definition
of these categories we refer to GROsS et al. (1985). Unfortunately, we were not
able to obtain the original data, that were collected with the random spot
check method (see below). The percentages in the cells of the matrix in table 1
were derived from stacked bar histograms.

TaBLE 1. Time-budgets of Amazone Indians.

Activities: 1 =being idle; 2=sleeping; 3=caring; 4=non-subsistence
behavior; 5 =domestic activities; 6 ="‘wild’.

Activities: 1. 2. 3. 4. 5. 6. Tot

Mekranoti  Males 463 056 006 278 070 .128 1.000
Females 434 068 .074 206 .199 019 1.000

Children .733 079 .007 029 .130 021 1.000

Kanela Males 562 037 016 201 .125 .060 1.000
Females 492 .046 097 269 .093 .004 1.000

~ Children 789 .107 006 .032 ~.062 .004 1.000

Bororo Males 563 049 002 142 121 124 1.000
Females 489 046 077 .321 .032 .034 1.000

Children .748 .109 002 .071 .033 .037 1.000

Xavente Males 660 036 003 .127 097 .078 1.000
Females 423 .023 .095 .335 .089 .035 1.000

Children .767 068 .005 .080 .066 .014 1.000

A matrix with time-budget data can be derived in distinct ways. Firstly,
time-budgets can be estimated with the so-called ‘random spot check method’
(see GRoss, 1984). In this method we know at random points in time what an
object is doing. The number of times that we observe a specific activity for
some object gives an indication for the total amount of time that this object
spends on this activity. The idea is simply that when, for example, a person is
baking bread 20 times out of the 100 times that we have observed him, we esti-
mate that he is baking bread 20% of his time. The random spot check method
stems from anthropology, but is also used in, for example, ethology, where the
activities of the objects are denoted by some observer. In the human sciences
objects can play a more active role, for example, persons can denote their
current activity each time some beeper beeps (see, for example, ROBINSON,
1985).

Another method to get time-budget data is by deriving them from so-called
event-history data. For event-history data we know for each object the length
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of time and the order of the activities. This type of data can be collected, for
example, by asking persons to keep a diary. This type of data can also be col-
lected in a matrix like in table 1. In this summary the time order of the respec-
tive activities is lost.

The analysis of time-budget data has the objective to study the relation
between the objects on the one hand and the activities on the other. The fol-
lowing research questions could be important: are there objects with a clearly
deviating pattern of activities? Is it possible to find groups of objects with very
similar patterns of activities? Are there activities that only occur for a long
period for some specific objects? Van der Heijden (1987) gives an overview of
data analysis methods stemming from distinct disciplines such as ethology,
sociology, anthropology to tackle such questions. In the first place such data
can be displayed using histograms, see figure 1.

CERSOR

Tribe x Sex

FIGURE 1. A stacked bar histogram of the data in table 1.

This gives a good representation of the ‘better filled’ activities, but on the
whole shows little from the possible relations in the data matrix. Another
drawback of this method is that, when the number of activities or objects
becomes large, the histogram becomes difficult to use as a summary. E

In much research we can find tables and graphical representations, in all
sorts of ways (see, for example, SzaLAl, 1972; ParkEes and THRIFT, 1980;
Staikov, 1982; HARVEY et al., 1984). Limited as these methods may be, a
clear advantage of this approach is that the results are easily explained to a
large audience. Some researchers use standard multivariate methods, where
correlations between the columns of the two-way matrix are calculated (see
ELLIOTT, 1984). The drawback of this is that correlations are not very well
suited as measures for the similarity of columns of frequencies, and no use is
made of the special property of time-budget data that each row of the matrix
adds up to 1 (see AITCHISON, 1986, for an extensive discussion of these points).
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Another possibility is to use methods that are specifically devised for the
analysis of contingency tables, such as correspondence analysis (GREENACRE,
1984). Here both objects and activities are displayed graphically as points in a
multi-dimensional space, where distances between points indicate in which way
the matrix departs from independence. In the context of time-budget data
attention for correspondence analysis is growing (see, for example, SAPORTA,
1981, 1985; DE LEEUW et al., 1985; VAN DER HEUDEN, 1987; VAN DER HEUUDEN
and DE LEeuw, 1989). Correspondence analysis seems to be very well suited
for this type of data with rows that add up to 1, because the distance measure
that is used by correspondence analysis, the so-called chi-squared distance,
indicates how rows (columns) with conditional proportions deviate from each
other. A drawback is, however, that the inferential side of correspondence
analysis is not very well developed (unless one uses models recently proposed
by GOODMAN, 1985, 1986) and that the results are a bit difficult to handle by
laymen (cf. DE LEEUwW and vaN DE HEUDEN, 1988). Loglinear analysis
methods have the drawback that, if there is a relation between the objects and
the activities, the number of parameters to be interpreted increases rapidly,
and that the parameters do not reflect the fact that the proportions in each
row add up to 1.

An important step forward in the analysis of time budget data was made by
AITCHISON (1986). He studied the analysis of a broader class of data, namely
compositional data, of which time-budget data are a special case. Composi-
tional data can be collected in a data matrix in which rows are vectors of pro-
portions that each add up to one. He considers many types of compositional
data, and many types of questions that can be asked about these data. Basi-
cally, his approach is to transform these data so that it is possible to work in R
instead of R, and to concentrate on the covariances between the columns
under the assumption that the rows of the transformed matrix are replications
from a multinormal distribution. In the discussion of this paper we will com-
pare the method that we propose for the analysis of time budgets with his
method for dimension reduction of compositional data coined “logcontrast
principal component analysis” (ATTCHISON, 1986, chapter 8).

In this paper we discuss another model for the analysis of time-budgets that
has the advantage that it shows in a simple way what relations exist between
the objects and the activities (see also DE LEEUW and VAN DER HEUDEN, 1988).
The model uses the special properties of time-budget data, and, if the data are
collected under product-multinomial sampling (for example, with the random
spot check method), it is possible to evaluate the fit of the model.

2. THE MODEL

We start from an I XJ matrix with objects i(f =1,...,I) in the rows and activi-
ties j(j =1,..,J) in the columns. We assume that the data are collected with
the random spot check method. The number of times that object i was doing
activity j is denoted by n;;. The total number of observations for object i is
fixed by the design of the study and equal to ;. (an index is replaced by ‘+’
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if we add up over the corresponding way of the matrix ). We can derive
observed conditional proportions p;=n;/n;+, and the observed conditional
proportions p;; can be considered as estimates of #;;, the theoretical conditional
proportion of time spent by object i on activity j in a typical period for object
i. If object i represents a group, then #; can be interpreted as the theoretical
proportion of time on activity j for a typical group member.

If we assume that the observations are independent, then the ;; in row i fol-
low a multinomial distribution with E(n;)=n, ;#;;. This assumption is only
realistic if the intervals between the observations are large enough. If the
objects do not influence each other, we can assume that the n; in the matrix
follow a product-multinomial distribution. In the sequel we will assume that
this assumption is not too heavily violated. Now we have the possibility to test
whether the distributions of conditional proportions p;; differ. With this aim
we calculate expected proportions under the model of independence. Assuming
that the proportions in table 1 are based on 100 observations per row, the
likelihood ratio statistic G? equals 251.9 with (I —IXJ —1)=55 degrees of
freedom. The statistic is asymptotically chi-squared distributed under the nul-
hypothesis. We conclude that it is significant, and therefore we have to reject
the model. The various rows of observed conditional proportions do not stem
from one underlying row of theoretical conditional proportions.

In interesting applications independence of objects and activities will be
rejected almost always. Therefore we propose to study the form of the depar-
ture from independence with a model for latent time-budgets. This model for
the theoretical conditional proportions m;; (where 7, =1) has the following
form:

K

Ty = > %t Bjx M
k=1

Here k(k=1,...,K) indexes the K latent budgets, where K is fixed by the
researcher. The idea behind this model is that there are K typical or latent
time-budgets specified by (Bik,...,Bx) that determine the behavior of all
objects. These parameters for the activities add up to one for each latent
budget and can be interpreted as proportions, i.e. 0=<B; <1 and B4 =1. Each
latent time-budget k ‘explains’ the time spending behavior of each object i to
some extent, specified by a;,. These parameters add up over the latent budgets
to one for each object, and can be interpreted as proportions, i.e. 0<a; <1
and a;+ =1. Notice that for K=1 this model reduces to the independence
model.

The number of degrees of freedom is (] —KXJ —K). This formula for the
number of degrees of freedom is derived below. In DE LEEUW and VAN DER
HEUDEN (1988) and van der HEUDEN (1987) this number was given
incorrectly.
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ESTIMATION

In this section we derive an algorithm to compute ML estimates of the param-
eters of our model. It is closely related to the EM-algorithm (DEMPSTER, LAIRD
and RUDIN, 1977), but we give a derivation which uses the idea of majoriza-
tion taken from convex analysis. Since we assume that the observations are
collected under a product-multinomial distribution the likelihood function L is
given by
1 J ! J K
L=3ns Y pjlnm =3 ne 2piln 3 auBy
i=1 =1 i=l j=1 k=1

Now suppose a; and Bj are the current values of the parameters, giving
estimated values ;. By Toncavity of the logarithm

X K
In #;—In zij;’{kgl B In By —kgl By In ca B}/ my.
For convenience we define 7 = a; B and 7 = oy Bjx- Also L is the value of
the likelihood function at the currert parameters. Then -

1 J K K
L=L+ X nit 2 py {kzl ik B 10 e Bi "kz B Inay By} ()

i=1  j=1 =17 = =" - =
with equality if and only if m; =my for all i,j,k. Now suppose we maximize
the right hand side of (2) over a; and B (with the normalization restrictions).
Then L at the maximum is larger than the maximum of the right hand side,
which is larger than the value of the right hand side at ay and B which is L.
Thus maximizing the right hand side of (2) actually increases The likelihood,
and is really simple, because it amounts to maximizing

1 K J K
L= 2 2”i+k]naik+2 2"+jk lnBjk 3
i=lk=1 j=lk=1
with n,-jk =n; +Pljaikﬂjk /ZU Note that n,j.,. =n; +Pij =n,-j.

Now we find the estimates of expected frequencies as follows. Consider the
observed frequencies n;=n; . p;. We start with trial values for ay and Bj.
Then calculate - -

Mg = 1y Py Bix /T, 4)
and after this update the parameter estimates by

Ak = Migp/nig (5)

Bix = nip/nysi (6)

which ends the first cycle of the algorithm. In each cycle the current best esti-
mates of the expected frequencies m;; =n; . m; can be used to derive the value
of the likelihood ratio statistic G2. When the difference between two subse-
quent G2-values is smaller than a prespecified criterion, iterating can stop, and
we can test the fit of the model using the current value of G2.
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Two types of parameter constraints are easily built into the algorithm,
namely specific value constraints and equality constraints. It amounts to maxim-
izing (3) under the constraints imposed. First we consider specific value restric-
tions, for example, ay=c or By =c for some i and k, or j and k, where
0<c<1. This restriction should be imposed in each iteration after step (6) of
the algorithm. Equality constraints can be built in in a similar way. For 8-
parameters we have to use the weighted average of two (or more)
(n4+x/n4+4)Bj that are constrained to be equal. For ay-parameters we
should use the weighted averages of two (n; 4 /n 4+ Jay, that are constrained to
be equal. Specific value constraints and equality constraints can also be built
in simultaneously. After imposing constraints, it is necessary to adjust the
other parameters in each iteration in order to satisfy a; . =1 and B, =1.

The algorithm can converge to a non-global maximum. In order to be
confident that one has reached a global maximum and not a local maximum,
different starting values should be used.

The estimation procedure shows the following properties of the model:

PROPERTY 1. At a stationary point the proportion of observations falling into
latent budget k is m, = n, .,/n, . Hence proportion =, is a measure of
the importance of latent budget k.

PROPERTY 2. The decomposition m;=2Zgay By with  restrictions
a;+ =1, B1x=1 and =, =1 is equivalent to the decomposition of the tran-
sposed matrix with elements 7, =Z,a; B8} with restrictions a’, =1, 8}, =1
and 7, =L

PROOF.  miymi=n 4 ZpayBi= S Dk e X /n g )= Zy
("i+k"+jk/”++k)- Similarly, nom; = n+j2kaikﬁjk: n+j2k("i+k/n++k)
nig/nii)= Ze(maeenip/ny o). Both decompositions provide us with
J J J 2P P . .
the same expected frequencies: m;=n; ;. m;=n 4 ;m; . The decomposition of =;;
iS del‘lved from that Of ﬂij by B;k =7Tkﬂjk /zkﬂkﬁjk a.nd ai‘k =ni+aik/2ini+a,’k.

PROPERTY 3. At a stationary point Z;n; . 7;;=n 4.

ProoOF. This is c€asy to see LlSlng that n,‘j+ :n,'j: Ein,+7r,j=252kn,+aikﬁjk=
Ekzini+("i+k/ni++)("+jk/n++k): Ze(Zin; 4 Xn U

PROPERTY 4. At a stationary point Z,m By =n;/n,, = ;.
PROOF. Zkﬂkﬂjk: Ek(n++k/"+++)("+jk/"++k)=n+j+/”+++=”+j/n++~

EXAMPLE.. We estimated the model with K =2 latent time-budgets for the
example in table 1. The estimates for the parameters are in table 2. When we
assume that proportions in each row are derived from 100 observations, the fit
is G = 96.3 with 40 degrees of freedom, which is significant. The model with
K =3 latent time-budgets gives a much better fit, namely G>= 37.0 for df
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=27, which is not significant at p=.05. We conclude that the model gives an
adequate description of the data. The parameters for K =3 can also be found
in table 2.

TABLE 2. Parameters estimates for K=1,2,3.

Row parameters: K=1 K=2 K=3
‘ k=1 | k=1 k=2 | k=1 k=2 k=3
Mekranoti  Males 1.000 | 239 761 | .002 .947 051
Females 1.000 | 277 723 | 357 .110  .533
Children 1.000 | 946 054 | 865 .114 .021
Kanela Males 1000 | 443 557 | 319 512 .169
Females 1.000 | 220 .780 | 360 .003  .637
Children 1.000 | 962 .038 | 932 .029 .039
Bororo Males 1.000 | .543 457 | 275 719  .006
Females 1000 | .174 826 | .239 218  .543
Children 1.000 | 893 107 | .753 245 .003
Xavente Males 1000 | .670 330 | 456 531 013
Females 1.000 | 020 980 | .120 .221  .659
Children 1.000 | 866 .134 | 795 .140 .064
Activities
Being idle 594 | 781 390 | 817 484 299
Sleeping 060 | .087 031 | 095 .040 021
Caring 032 | 000 068 | 002 .000 .138
Nonsubsistence | .174 | 023 339 | 006 238 421
Domestic 093 | 081 .105 | 080 .094 .116
‘Wild* 047 | 028 .067 | 000 .143  .005

We can describe the most important results as follows. A simple way to
interpret the parameters is to start with the interpretation of the latent budg-
ets, by comparing the latent budget elements B, with the marginal proportions
7; (Le. the latent budget K =1). We do this for the solution with K =3 latent
budgets only. The first latent budget is typical for an activity pattern in which
persons are much more than average idle (.817 as compared with .594) and
sleeping (.095 versus .060). The other activities occur much less than average.
The second latent budget is typical for a behavior pattern in which persons
perform much more than average nonsubsistence activities (.238 versus .174)
and the activity ‘wild’. (.143 versus .047). Being idle, sleeping and caring are
performed less often than average. The third latent budget is typical for caring
(.138 versus .032) and nonsubsistence activities (.421 versus .174). Being idie,
sleeping and ‘wild’ are performed much less often than average. Now that we
know how to interpret the latent budget, we can interpret how the behavior of
the groups of persons is built up from them. A first idea can be obtained by
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looking for the highest proportion in each row of contributions ;. Roughly,
we see that the behavior of the children of each tribe is built up for the largest
part from the first latent budget, i.e. they are much more than average idle and
sleeping. The males load highest on this second latent budget, showing that
they perform much more than average nonsubsistence activities and the
category ‘wild’. The pattern of activities of the females is built up for the larg-
est part from the third latent budget, i.e. from caring and nonsubsistence
activities,. We conclude that the differences between the males, females and
children dominate the solution, and seem to be larger than the differences
between tribes. However, we can also discern tribe differences, for example, the
activity pattern of the Mekranoti males is clearly dominated by the second
latent budget (.947), whereas this proportion is much lower for the Kanela
males and the Xavente males.

If we plot each object i in a three-dimensional space with its parameters a;;
as coordinates, then the cloud of object points falls into a triangular two-
dimensional subspace within corner points (1,0,0), (0,1,0) and (0,0,1). See figure
2. It shows in a clear way what is going on for the row parameters in table 2
for K =3. With each point in figure 2 a budget is associated (see table 3): each
of the 12 objects i has an expected budget (m;y,...,7;;) associated with it, the
average has my,...,m;,...,m; as its budget, and each corner point k has its lazent
budget (Bix,-...B)- The expected budget for row i can be derived in a simple
way from the three latent budgets, for example, the budgets for rows 7, 9 and
10 are somewhere in between the latent budgets 1 and 2. The average budget
can be derived from the data directly as #; =Z;(n; 4 /n 4 4 )m;;. They can also
be derived from the latent budgets using property 4. The proportions m, (see
Property 1) are used as coordinates for the average budget in figure 2.

(1.0.0)

0,0,1) * (0,1,0)

FIGURE 2. Plot of the a-parameters for K=3. Example: coordinates
of average are .456, .316, .228.
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TABLE 3. Expected time-budgets for K=3.
Activity numbers as in table 1.
Activities: 1. 2. 3. 4. 5. 6. Tot

Mekranoti Males 475 039 007 247 095 136 1.000
Females 504 049 074 253 .101 019 1.000
Children 768 .087 .005 .041 083 .016 1.000
Kanela Males 559 054 024 195 094 074 1.000
Females 486 .047 .089 271 .103 .004 1.000
Children 787 .090 007 .029 082 .004 1.000
Bororo Males 574 055 001 176 091 103 1.000
Females 463 042 075 .282 .103 .034 1.000
Children 734 081 002 064 .084 .035 1.000
Xavente Males 633 064 003 .135 .088 .076 1.000
Females 402 .034 091 331 .107 .035 1.000
Children 737 .082 .01l 065 .085 .020 1.000

Latent budget 1 817 095 002 006 .080 .000 1.000
Latent budget 2 484 040 000 238 .094 .143 1.000
Latent budget 3 299 021 .138 421 116 .005 1.000
Average budget 594 060 032 174 093 047 1.000

We can make a similar plot for the column parameters B; when we use B}k
derived in Property 2. See figure 3. We can deduce from figure 3 that activities
1 (idle) and 2 (sleep) fall more than average in the first latent budget; 6 (wild)
is more than average in the second latent budget 6; 3 (caring) and 4 (non-
subsistence activities) are more than average in the third latent budget.

(1.0.0)

Figure 3. Plot of the rescaled B—parameters for K=3.
Example: coordinates of average are .456, .316, .228

(0,10 0,0,1)
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The goal of the model should be clear by now: it tries to give a parsimoni-
ous description of the data with typical time-budgets given by B;. The propor-
tions a; show how the objects load on these budgets, or, to put it differently,
how much each typical budget explains from the time spending behavior of
each object. The latent budgets describe the ‘extreme’ typologies between
which each object falls.

3. IDENTIFICATION

The latent budget model is not identified. This aspect was not discussed by DE
Leeuw and vaN DER HEUDEN (1988) and vaN DER HEUDEN (1987). One way
to study identification is to construct the matrix with partial derivatives of the
probabilities with respect to the parameters, and to determine if it is of full
column rank. We will consider another, and in most respects more satisfactory,
way to study the identification of the model. Consider (1). In matrix notation
we can write (1) as [I=AB’. Model (1) is comparable with the reduced rank or
singular value decomposition of matrices, used in factor analysis or principal
component analysis. The main difference, or course, are the nonnegativity con-
straints on 4 and B. In reduced rank decomposition there are identification
problems. A similar situation holds for the latent time-budget model: given
matrices 4 and B, we can find new matrices A =AT and B=B(T 'Y that give
an equivalent solution. .

It is clear that, if (4,B) and (4,B) satisfy the equations above, then (4,B)
and (4,B) provide equivalent solutions in the sense that II=4B’=A4B’. The
reverse is proven as follows. Let IT have rank K. Then the columns of IT are J
vectors of in R}, and in this space they span a subspace with dimensionality
K. The K columns of 4 and we K columns of 4 each span a cone in this same
nonnegative subspace of dimensionality K. All columns of II are in the cone
spanned by A and in the cone spanned by 4. Since both B and B are nonnega-
tive, the columns of IT can be derived both from 4 and A as nonnegative
linear combinations. Hence the columns of 4 can be derived as linear combi-
nations from the columns of A4, i.e. 4 =AT. So, if (4,B) and (4,B) are
equivalent solutions, then the matrices are related by A =AT and B=8B (T y.

So if we want to study the identification problem, we can do this by study-
ing the matrix T. Starting from 4 and B we can derived new matrices 4 and
B. The new matrices A and B should have restrictions similar to

Sy =1 (Ta)
k
> Bix =1 (7b)
J
0<a,~kS1 (7C)
0<By <l (7d)

Therefore we cannot choose an arbitrary matrix 7.

ke
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THEOREM 1. Letr u; be a unit column vector of order I, let u; have order J and
let ug have order K. Suppose A and B satisfy Aw, =u; and B'u;=ug, and A is of
rank K, then A=AT and B=B(T"'Y satisfy Au, =u; and B'u; =uy if and only
l:f TuK —ug.

PROOF. _
1. If Z’ux=u,(, then AUKZATUK=UI.

If AUK=III, then AT“K=UI. But also AuK=u,. Therefore A (TuK—uK)=0

and Tug =ug because A4 is of rank K. _
3. If Tug=ug then B'uy=uy. This follows from B'u;=T 'B'y;=T luy.

We know that Tug =uy and therefore T~ 'uy =uy.
4 If B'uJIuK then T_IB’HJ=HK. Thus T’luK=uK and therefore uK=TuK.

QED ]

We conclude that if we choose T so that T' adds up to 1 rowwise, then A4
will add up to 1 rowwise, and B will add up to 1 columnwise, thus satisfying
(72) and (7b). )
What further assumptions have to be imposed upon T so that the new A
and B fulfil assumptions (7c) and (7d)? We will show this for our example,
with K =2 latent budgets. We only have to specify ranges for two values of T,
since T adds up to one rowwise: so T has elements
x l—x
T =
1=y

We will first consider the ranges of x and y that are allowed to let the first
column of A satisfy (7c) (then the second column also satisfies (7c)). So, using
table 2, we find

0=<.239x + .761y <1 (8a)

0<..866x + ..134y<I (81)

We now consider the equations for the restrictions on the values of B that
have to be fulfilled so that restriction (7d) holds. T~! is given by

: O-y—x) (A-x)/(y—x)
T ' =
0 —x) (—x)/(y —x)

So, using the values of B displayed in table 2a we can find the following equa-
tions:
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0<.781(y — 1)/(y —x) + .390(1 = x)/(y —x)<1 (9a)
0<.028(y — 1)/(y —x) + .067(1 —x)/(y —x)<1 (99
0<.781(y)/(y —x)+.390(—x)/(y —x)<1 (10a)
0<.028(y)/(y —x)+.067(—x)/(y —x)<1 (10)

Many of the above inequalities are redundant, because, if we assume only that
all values are larger than 0, then no value can be larger than 1 due to restric-
tions (7a) and (7b). If we work out all the inequalities, we find permissible
(x,p) values that we can represent in a two-dimensional plane, see figure 4.

v=-axis

(x.yk=tl )

ix vl

(Rf)
(10b) S

Ly R 1.0}

x—axis

(8k)

1.y =00y

FIGURE 4. Ranges of permissible (x,y) values due to restrictions (7c)
and (7d) in two shaded areas.

It shows two blocked areas of the same form with permissible values for (x,y).
The two areas have the same shape because, by choosing an appropriate 7, it
is possible to interchange the first and the second column of 4 and B. The
values (x,y)=(1,0) and (x,y)=(0,1) are necessarily included in the areas, since
they specify the identity matrix (i.e. we find 4 =4), and the situation where
the columns of A interchange. Without loss of generality we concentrate on the
lower right area. E

The lower right area is defined by four lines. Each of these lines corresponds
with a specific parameter being equal to zero. We will sketch a fast procedure
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to find these lines.

We start with the two lines crossing right below the point (x,y)=(1,0).
These lines correspond with two a;-parameters being zero. These lines can be
found by using only the extreme rows of 4, i.e. the row whose values (a;),a;3)
are nearest (0,1) and the row whose values (a;,q;,) are nearest (1,0). For our
example this corresponds with row 11 (.020,.098) and row 6 (.962,.038), the
other rows being inbetween. The reason that we only need two rows of 4 is
that all inequalities should hold simultaneously, and two inequalities are most
extreme. There are always two extreme inequalities, that define the lines that
cross right below the point (x,y)=(1,0). Say the line through (x,y)=(1,1) has
slope z, the line through (x,y)=(0,0) has slope z*. We are looking for the
smallest z and for the largest z*. The slope for row i is —a;;/a;3. It is easily
seen that —oo<z<z*<0. It follows that equations (8a) to (81) restrict the
area with permissible (x,y)-values by two lines that cross somewhere bottom
right from (x,y)=(1,0).

The other two lines, that cross top left from (x,y)=(1,0), correspond with
two B being zero. These lines can be found as follows. For the line through
(x,y)=(1,1) we search for the largest slope z** derived from the inequalities
specified by equations (9a) to (9f); and for the line through (x,y)=(0,0) we
search for the smallest slope z*** derived from the inequalities specified by
equations (10a) to (10f). The slope for category j is B;2/B;;- Hence the largest
slope z** is given by category 3, being z** =o00. The smallest slope z*** is
given by category 2, being z***=.031/0.87. It is easy to see that the range of
z** is (1,00), and the range of z*** is [0,1). It follows that, due to the restric-
tion (8d), two lines are found that cross somewhere in the triangle formed by
the points (x,y)=(0,0),(1,1), and (1,0).

We can study boundary solutions for 4 and B using the unidentified solu-
tion in table 2 and the corner points of the area in figure 4. The corner points
are (1.000, .356), (1.025, .365), (1.000, -.020) and (1.040, -.021). Using these
values for (x,y) we can derive four new sets of parameters, see table 4. In table
4 we get an idea of the ranges of identifiability.
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TABLE 4. Solution corresponding with corner points in figure 6.

(x,y)coordinates 1.000 .356].1.025 .365(1.000 -.020(1.040 -.021
Mekranoti Males 510 490] .523 477 224 .776| .233 .767
Females 534 466 .548 4521 .262 .738| 272 .728
Children 965 .035| .990 .010| .945 .055| .983 .017
Kanela Males 641 .359] .657 .343| 432 .568| .449 551
Females 498 502| .510 .490| .204 .796( .212 .788
Children 975 .025| 1.000 .000{ 961 .039(1.000 .000
Bororo Males JJ06 294 (723 277| .534 .466] .555 .445
Females 468 532| .480 .520| .158 .842| .164 .836
Children 931 .069| .954 .046| .891 .109| .927 .073
Xavente Males 788 .212| .808 .192| .664 .336] .690 .310
Females 369 .631| .378 .622| .000 1.000| .000 1.000
Children 914 .086] .937 .063| .864 .136) .898 .102
Activities
Being idle J181 (174 .766 .174| 781 .398{ .766 .398
Sleeping .087 .000| .085 .000]| .087 .032] .085 .032
Caring 000 .105| .003 .105| .000 .066] .003 .066
Nonsubsistence .023 .514| .035 .514| .023 .333| .035 .333
Domestic 082 .119| .082 .119] .082 .105] .082 .105
‘Wild’ 028 .089| .029 .089] .028 .066] .029 .066

If there are three latent budgets, things become much more complicated.
For K =2 we can picture the situation in a two-dimensional space, but for
K =3 we need a six-dimensional space. Another way to proceed is to use
figure 2 and 3 as a starting point. In figure 2 we see how the expected budgets
for the rows in Il can be derived as a nonnegative linear combination of the
three latent budgets in B using A. We know that the model is not identified,
i.e. we can find the same expected budgets for the rows in I by defining new
coordinates in A4 for the 12 points and new latent budgets in B. Graphically
this corresponds to making a new triangle. Not every triangle is allowed, firstly
because restriction (7c) implies that no row points may fall outside the triangle
since the linear combination of the latent budgets should be nonnegative, and
secondly, because the corner points cannot be too far away from the twelve
row points, because this would result in a violation of restriction (7d). Keeping
this in mind we can find an identified solution that has the same fit as the
unrestricted solution in the following way.

At least six values have to be fixed in order to identify the model. In order
to simplify the interpretation we restrict as much a; -parameters as possible to
zero. Figure 2 suggests that this can be accomplished by setting
a ) —ay ) =as = a6‘2=a7,3=a9'3=0. So a matrix 7 can be derived that
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restricts these values to zero by solving a system of six linear equations (one
for each restricted parameter) with six unknowns (the independent values of
T). As a second step we have to check whether B(T ~1y>=0. For this exam-
ple this approach works. However, this approach does not always work
because B(T 'Y can have negative elements. If this happens at least one of
the a; -parameters being restricted to zero has to be restricted to a less extreme
value.

To summarize, the model is unidentified, but the identification can be better
understood by making plots such as figure 4 (for K =2) and in figure 2 and 3
(for K =3). If K>3, then things become even more complicated. Firstly, for
K =3 we have to approach the convex hull of the rows points with three lines,
and for K =4, for example, we have to approach the three dimensional convex
hull using four planes. Secondly, it is more difficult to solve the problem that,
given some acceptable T for which 4T'30, the matrix B(T ')’ can have nega-
tive elements. At the moment we are working on these problems.

After having imposed constraints we can check for identification by check-
ing T. If the only admissible T to go from A and B to 4 and B is the identity
matrix, then the model is identified. This method to check for identification
was used before, for example, by MOOUAART (1982).

THEOREM 2. The number of degrees of freedom of the LBA model is
(I —KyJ —K).

PrOOF. The number of degrees of freedom is equal to the number of indepen-
dent cells minus the number of independent parameters. The number of
independent cells is I(J —1). Due to restrictions (7a) and (7b) the number of
row parameters is I(K —1), the number of column parameters is K(J —1).
However, these parameters are not identified, and therefore not independent.
We have to subtract the free elements of the matrix T to find the correct
number of independent parameters, i.e. we have to subtract K(K —1). This
gives I(J — 1)~ [[(K—1)+K{J —1)— KK -1)]=I —K}J —K). QED

4. STABILITY

Now that we have an identified solution, we can study the standard errors of
the parameters. Thus we have an idea of the stability of the solution. We
derive the standard errors using the delta method (see, for example, BisHOP,
FiENBERG and HOLLAND, 1975, section 14.6.3).

We first redefine the parameters. Let

@y = expwy/ 2 exp w; an
Bix = exp 8/ exp by (12)
1

The partial derivates of a; and By with respect to the new parameters w; and

0, are
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B0 /0w, = 8%a, (8% —ay) (13)
where §” is a Kronecker delta. Now
Omi /0wy, = 3 Buday/dwy = 8“a,,(ﬁj,—vr_,j) (15)
k
k

We find the asymptotic covariance matrix of the estimators of the parameters
wy, and 6, in the following way. First we collect the partial derivates (15) and
(16) in a matrix G having IJ rows (corresponding with m;) and /K+JK
columns, corresponding with the estimators of the parameters w; and 6,,. The
elements of columns of G that correspond with fixed parameters haye value
zero. Values p;;/n; . are collected in a diagonal matrix D. Then the covariances
between the estimators of the parameters w,, and 6, are the elements of the
matnx

2= 1ny(GDTIG)! a7

where from (G’D ~' G) the Moore-Penrose generalized inverse is taken.

In order to find the covariances between the parameters ay and B, we col-
lect the partial derivatives (13) and (14) in the matrix W, having a; and B in
the rows and w,, and 8, in the columns. Then the covariance matrix 2. for
the parameters a;, and B is equal to

S, = WEW' (18)

The square roots of the diagonal elements of X, are the asymptotic standard
errors of the parameters a;;, and B;.

As an example we show the identified solution discussed above, where
ay = a) ) =as ) =g =a73=ag3=0. For K=3 latent budgets we find a fit
of G2=37.0. The parameter values with their standard errors are reported in
table 5. ’
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TABLE 5. Parameter estimates with standard errors for identified
SOlUtiOD with aypy =a“'| =a5'2 =a6‘2 =a-,_3 =ag 3 =Q.

Row parameters: Males Females Children
k=1 k=2 k=3 |[k=1 k=2 k=3|k=1 k=2 k=3
Mekranoti .000* 949 .051] 267 .106 .627| .890 .087 .023
(09) (.09)| (.13) (.11) (.15)[(.10) (.08)
Kanela 302 .505 .193] .250 .000* .750{ .955 .000* .045
(.13) (.16) (1D} (.15) (-15)| (.08) (.08)
Bororo 289 .711 .000%| .145 218 .637|.779 .222 .000*
(15) (.15) (14) (.14) (1D (1) (11
Xavente 473 517 .010[.000* 226 .774| .801 .116 .074
(.14) (.14) (.05) (.15) (15)[(10) (.09) (07)
Activities k=1k=2 k=3
Being idle .806 .480 .379
(.04) (.05) (.07)
Sleeping 093 039 .032
(.02) (.03) (.02)
Caring 002 002 .117
(.01) (.01) (.03)
Nonsubsistence 014 242 357
(.03) (.05) (.06)
Domestic 084 .095 .111
(.03) (.04) (.05)
‘Wild’ 004 143 004

(01) (03) (01)

5. CONCLUSION

The latent time-budget model is a tool that can be helpful for obtaining a par-
simonious description of time-budgets. Its parameters are interpretable as pro-
portions, which makes communication with non-statisticians much easier.
Relations with other methods, as well as the incorporation of row and/or
column structure, are studied in DE LEEUW and VAN DER HEUDEN (1989) and
VAN DER HEUDEN, MOOUAART and DE LEEUW (1989).

The statistical properties of the model are derived under the assumption that
the time-budgets are collected using random spot check methods. If the data
are not collected by random spot check methods, but the budgets are formed
by aggregating continuous-time event-histories (compare the introduction),
then the statistical analysis becomes more complicated. Estimates of the latent
budget parameters will still be consistent, but the likelihood function for these
marginals is now much more complicated, which implies that the estimates are

Y
e
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not longer efficient. In the case of a stationary continuous time Markov chain
the asymptotic distribution of these occupancy times has been derived by
Goop (1961), compare also BILLINGSLEY (1961). Unfortunately in this case the
asymptotic distribution also involves the transition matrix of the chain.

We will compare LBA model with logcontrast principal component analysis
(AITCHISON, 1986). In Aitchison’s approach to the statistical analysis of com-
positional data the first step is to transform the compositional data in I1. One
transformation is to replace the values my; by z;=log(m;/g(m,)), where
g(m)=(my..my)", i.e. the geometric mean. Elements z;; are collected into the
matrix Z. Logcontrast principal component analysis decomposes the covari-
ance matrix I' derived from Z as I'=Q®Q’, with Q’Q=1I, where ® is the
matrix with eigenvalues in descending order. The component loadings are
defined as Q®""?, and the component scores as P =ZQ. For our example the
component scores are shown in figure 5 and the component loadings in- figure
6. The eigenvalues are 2.675, 1.229, .283, .109 and .042, and this shows that the
first two dimensions account for 90.0% of the variance.

N

o
=4
.2
E el e 1l
1 -
g a7 wd "8
2] = 10
0 - + .2
1 s 9 5e
4 s 12
"3
-2~
=6
-3 v Y v T v T v T r T v
.3 -2 -1 o 1 2 3
dimension 1

FiGURe 5. Component scores of logcontrast principal component analysis.
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FIGURE 6. Component loadings of logcontrast principal component analysis.

Figures 5 and 6 are strikingly similar to figures 2 and 3. This can be
explained as follows. LBA gives a rank 3 approximation of the matrix IT using
a nonnegative decomposition. By eliminating the mean vector to the simplex
two-dimensional representations are obtained in figures 2 and 3. In logcontrast
principal component analysis the matrix II is transformed into a matrix Z; this
transformation is monotonous for each row. This transformation has the result
that elements z;; of the matrix Z have the property that z; =0. As a second
step Z is transformed into Z, that is in deviation from column means, and
therefore z;, =0 and z,;=0. So the rank Z is reduced with 1 to min
(I —1,J —1). Then Z is decomposed as Z=P®"2Q’, the first two dimensions
are displayed in figure 5 and 6. So it is not surprising that LBA and logcon-
trast principal component analysis give similar graphical representations: LBA
gives a nonnegative reduced rank approximation of II, and logcontrast princi-
pal component analysis gives a reduced rank approximation of a transforma-
tion of II.

LBA has the advantage that its parameters are very easily interpretable. We
think that LBA is preferable over logcontrast principal component analysis if
the data are collected with the random spot check method, because then it is
allowed to draw conclusions about the populations using sample data. For
logcontrast principal component analysis such conclusions are allowed if we
assume that the rows of Z are replications drawn from a multinormal distribu-
tion. Then the covariance matrix T’ can be decomposed using confirmatory fac-
tor analysis, for example. For the data in table 1 we think that it is not very
attractive to consider the rows of the matrix (the groups) as replications.
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