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This paper desls with a system of loss functions, measurement

-levels and process types for some forms of principal

components snalysis (= PCA). Generalizations are made for
incomplete data-matrices and non-metric options. PCA for
wﬁdmmmmudmamwmmﬂwwh$méwﬂmm"mm
metric " PCA (Young,Takane & De Leeuw or Tenenhaus or Kruskal
& Shepard) are integrated in a single loss function and a
corresponding algorithm. The ALS algorithm and its convergence

properties are discussed.

I1 s’agit 4’un systdme des fonctions de perte, d’une
typologie de donnes décrites & 1%aide de variables
caractéristiques nominales, ordinales ou numériques,

et des transformations disjonctives ou continues pour
1’analyse des ensembles des données incompléts et
mélangés en composants principales (= PCA). Deux sor—

tes de PCA sont combinfes dans une fonction de perte

et dans 1’algorithme correspondent., Les deux catégories

de PCA sont PCA pour des données exclusivement nominales
(Guttman-Hayashi-Benzéeri) et PCA pour des donndes
mélangées, comme les methodes de foung, Takane & De Leeuw,
ou de Kruskel & Shepard, ou de Tenenhaus. Aussi sont dderits

les qualités de convergence de 1’algorithme.
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INTRODUCTION

Principal components analysis is one of the most popular deta-reduction
technigues in the social sciences. But the existing computerprograms for PCA
impose rather severe restrictions both with respect to completeness of
datamatrices and interval measurement of varisbles. If these restictions are
violated, one is forced to take ad hoc measures. The assumption of interval scales
in the social sciences is usually not justified, and often data matrices are
incomplete. So it seems desirable to generalize the existing programs in such a
way that more general types of variables with arbitrary patterns of missing data

can be analyzed.

Some of these generalizations have been discussed earlier in the psychometric
literature. In the first place there are PCA techniques for strictly nominal
varisbles. Guttman gave a rather complete description in 1941, which has been
extended later by Mosteller, Lord, Burt, Guttmen, Hayashi, Lingoes, Nishisato
and others. For more complete references see De Leeuw (1973). In the sixties
Benzécri a.o. developed an equivalent form of PCA for nominal data in France
which was called " analyse des correspondances ', This method is also worked out
in many weys and a recent gurvey in french of the many applications,
specializations and interpretations is given by Benzécri a.o. (1973). A useful
review of this method in english is given by Hill (1974). The most complete and
most general description of the results of the french school is Dauxois and

Pousse (19T76).

Besides the Guttman-Hayashi-Benzécri branch of PCA for nominal data, there exist
several "nonmetric" generalizations of PCA. Probably the best known technigue

of this kind is Shepard and Kruskal (197L), but there exist also nonmetric PCA
techniques in the GL-SSA series (Lingoes,1972), in PRINCIPALS (Young, Takane and
De Leeuw, 1978), in PRINQUAL (Tenenhsus, 1976), in POLYCON (Young, 1972) and in
a program series made by Roskam (1968). The aim of our project is twofold: in the
first place we have developed a general theoretic framework in which the two
different forms of generalized PCA can be described and elaborated. Secondly
grest attention is given to the development of computerprograms, whose first and
foremost aim is the solution of very big problems in a reasonable small smount of
computing time. This makes high demands upon both algorithms and computerprograms.
The algorithms are constructed according the alternating least squares method and
they are written following the principles of structured programming. Optimization
of subprograms is based upon their timing profiles during the analysis of large

datasets.
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INTERVAL DATA

One can define PCA in several ways. Here we prefer geometrical starting points
and loss functions, derived from the geometry of the problem; that is, we prefer
to see PCA as a multidimensional scaling method. Suppose we have n chservations
i on m numerical variables {i=1,...,n3j=1,...,m). We want to represent these
observations as points in a p-dimensional space and the variasbles as directions
in thet space i.e. as lines through the origin. Observation i is represented as
the point x = (Xi1’xi2""’xi ), and variable j is represented as the direction

D

cosines a; = (aj1,a. ). Thus agaj = 1 for all p. We require that the

o0t ,ajp
orthogonal projections of the observation points Xy aXyseee ¥ on the direction

defined by variable j are proportional with the measurement Vis

A perfect representation is thus defined by the requirements

_ P
Vis = By Tom1 ¥is %ys (1)

Clearly sa perfect representation exists if and only if we can find a matrix X
(n x p) and & matrix A (m x p) so that ¥ = XA' i.e. if and only if rank (Y) € D.
If & perfect solution does not exist for a chosen p we use the loss function:
T\T
)

o= tr (¥ - xa)T(Y - xa7) (2)

This loss function is to be minimized over X and A. The minimum can be found by
means of a singular value decomposition of Y or by means of an eigenvalue-
eigenvector decomposition of YTY or YYT. These computational methods have two
drawbacks. In the first place the computing time increases by the third power of
the number of variables, which entails that really large datasets cannot Dbe
analyzed. Secondly these methods are not easily generalized to more general forms

of PCA.

MISSING DATA

One of these more general forms of PCA is the case in which observations on
several variables are missing. A suitable generalization of formula (2) is
obtained by using diagonal matrices Mj’ indicating which observations on
varisble j are missing. Diagonal element i of Mj is unity if yij is not missing,

and equals zero if yij ig missing. Hence we get:

n T
= R ., = Xa.) M, . - Xa.
o, = tr ZJ=1 (yJ aJ) J(yJ aJ) (3)

This loss function has some serious disadvantages, of which the most important

one is that minimization of (3) is not an eigenproblem anymore.
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We consequently use an alternative:

m T\T T
= 2.0 tr (X - y.a;) M.(X - y.a, 4
0y = Lioy r ( yJaJ) J( yJaJ) (%)

One has to prove that formila (4) is & generalization of formula (2). Suppose
there are no missing data, i.e. M. = I for all j. Under the normalization

requirements XX = I and a?j‘-aj = 1 for all j we find:

o, =0, +m(p-1) (5}

In this special case the minimization of 9, is equivalent to the minimization
of 01. When Mj # I for some j we have two different problems.

OPTIMAL SCALING

Until now we have assumed that all varisbles had at least an interval measurement
level i.e. the elements ¥y are constants within the iterative process. We will
generalize the idea by making the weaker assumption that the vectors M.y, have
to be in known convex cones Kj. The loss function in formula (4) has to be
minimized over X, over A end over Y. The minimization of Y for temporary fixed
values of X and A during an iteration is sometimes called the " Optimel scaling "
or the optimal quantification of variables (Young, De Leeuw and Tekane, 1979).
This so called " optimality " is defined in terms of a particular loss function.
Every minimizing sub-operation within an iteration corresponds with a type of
partitioning of the residual sum of squares. The particular optimal scaling

partitioning is:

T
a.8.
m T - T -~ m T
G =23._,tr (a.a, = F )My, - F) 4 I s MLX{T - —SRIXM,
J=1 (J J-)(yJ yJ) J(yJ. yJ) 3=1 J{ e 3
. 1 33
vhere y¥. = T M.Xa, . ,"
J a.a. J J
3

After some substitution we find:

m T T m
- tr (a.a. My,) - X.
J=1 ( J J)(yJ JyJ) J=

which is evidently equal to formula (k)

o=3 tr 2y M. Xa, + 5.0 tr M,X{M, ,
i3 J=1 J J

1

c=23.2

T m
soq T XM - 3

T m T T
tr 2y M.Xa, + ... tr a.y:M.y.a: . (8)
I35 J=1 i

1 J

We minimize the first term of (6) over Vs under the restriction that vy is in the
cone Kj' This defines a cone regression problem, the general theory of which is

dealt with by De Leeww (1977).

Metric PCA is the special case where the cones Kj are one-dimensional subspaces

i.e, lines through the origin. In the case of ordinal varisbles the cones K,j are
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sets of isotonic or monotonic vectors i.e. those vectors on which the observations
are ordered in the same way as on the original raw data vector. Because of the

peculiar character of nominal variables we will deal with those separately.
PROCESS TYPES

A description of the several types of scales which can be used within the ALS
fremework is given in De Leeuw, Young and Takane (1976). We suggest here a
different classification based upon the same ideas. All variables are considered
to be categorical and they can be interpreted as discrete or continuous. The
categories of discrete categorical variables are represented as points on a scale
and the categories of continuous categorical varisbles are represented as
nonoverlapping intervals. The scale values of the individual cbservations have to
fall within the quantifications of the corresponding categories in both cases.
This means that for discrete variables the quantifications of observations and

the quantification of the category to which they belong have to coincide.

We use indicator matrices to show the relation between quantifications of
observations and categories (De Leeuw, 1973}, An indicator matrix G for n
observations on a k~category variable is an x k binary matrix with &, = 1, if
observation i scores in catefory c, and &, = 0, if i scores in another category.
We distinguish discrete and continuous variables of interval, ordinal and nominal
level. Continucus interval is a new type which is not mentioned in De Leeuw,Young,
and Tekane (1976), but which has recently been discussed in De Leeuw and Walter
(1979). Continuous and discrete nominsal variasbles have been discussed in De Leeuw,
Young and Takane (1976). We do not discuss them in detail because in most cases
it does not mexe much sense to map purely nominal data on a linear scale.
Therefore we will use the alternative definition of continuous and discrete

process types in respect to ordinal and interval data.

Assume an ordinal variasble with k categories. In the continuous case we quantify

. -+ . . s
a category c as an interval (zc,zc) with the restriction:

- + - + - +
€2 €2, 82,8 Sy g (9)
and for all i
- K +
. Ly, £ . . 1
Zc=1 Bic%e Y3 % z:<:=1 8% (10)

In the ordinal discrete case we have the extra restriction:

=g (=zc) for all ¢ (11)
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and thus:

ok
vy ® Z<:=1 & e (12)

. . . - +
In the case of continuous interval variables ze and zc are known nurbers

R - + .
with z, < Z, . There have to exist an o » 0 and a B such that

k - k +
. + B <Ly .
e=1 8Bic%c 8 ¥y o Zc=1 8 %

oz +B . (13)

/N

In the discrete case again we have the restriction:

- +
z =z |

R . = Zc) for all c, (1k4)

thus:

_ k
¥y = o z:c=‘l Eic%e + 8 (15)

One can often expect the upperbound of a category to be equal to the lowerbound

of the next category in case of continuous interval data.

One can see from formula (6) that the condition that Xa‘j is in the cone Kj’ is
necessary for a perfect solution. This means that for ordinal discrete data the
yi have to be on k parallel hyperplanes (dimension p-1) orthogonal on the
direction aj. The prdjections on this direction must be in corresponding order.
For ordinal continuous variables there have to be k-1 hyperplanes which separate
the k clusters of points belonging to the observation scores in k categories. The
yi in category c are between the hyperplanes of category c-1 and category c+l.
With discrete interval data v must be on corresponding hyperplanes but also these
hyperplanes must be at certaln distances to each other. Those distances are on
an interval scale i.e. known up to a multiplicative constant, and for continuous
interval data the vy must be between an upper- and a lower bound with the
necessary numerical properties. If the upper hyperplane of a category coincides
with the lower hyperplane of the next category, there exist k-1 hyperplanes that

separate the clusters of points belonging to the categories. See fig. 1 .
NOMINAL VARIABLES

In our earlier paragraphs we have discussed a generalization of non-metric PCA
with the according loss functions, a system of measurement levels, algorithms
and geometrical representations. In the sequel we will deal with the question
how nominal data do it in this framework and what is the relationship between

PRINCALS and the Guttman-Hayashi-Benzéeri spproach (= HOMALS) to categorical data.
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Nominal discrete data : Suppose a variable has k categories. We define k binary
diagonal matrices Mc with the diagonal element Mci equal to wity if observation i
is in category c and equal to zero if i is not in category c. If there are no
missing data the sum of all Mc is identity. The PRINCALS loss function for this
varisble is:

_ ¢ k T\T T
o=f _,tr (X-ya)MX-ya) (16)

The optimal scaling restrictions for vy, are that all observations in category ¢
will get the same score. So we treat our nominal varisble with k categories as k
binary veriables with missing data., This is of course quite different from
dividing a k-category variable into k complete binary variables. The relation
with classiéal categorical PCA is rather straightforward (if no missing data
exist). We can rewrite formula (L), using the indicator metrix G and the diagonal

matrix of category frequencies D = GTG, as

6= tr X% - 2 tr X'eDiA + tr ATA (17
Define E = D_%A. This implies

o =tr (X - GE)' (X - GE). (18)

Now we can say that in case of no missing data and only nominal discrete variables
PRINCALS is equivalentsto an eigen decomposition of the supermatrix C with

submatrices

[N

,
- 7 %a Ta m
Cyp = D376, G, (19)

which is the Guttma.n-Hayashi—Bengécri PCA for categorical data, a generalization
of which is the computerprogram HOMALS of Van Rijckevorsel and De Leeuw (1978)
and De Leeuw (1976)., An extra adventage, which is not accidental, is that we can
apply the geometrical properties of this form of PCA to our PRINCALS and HOMALS
solutions, Formula (18) shows that perfect fit is defined as the coincidence of
all observation points with their corresponding category points, and the
minimization of (25) over all variables equels the minimization of the withine
category variance of the representation, for further details see L~ Leeuw (1973,
1976).

Nominal eontinuous variables are analysed by dividing a k category nominal
varisble in (;) binary variables. Every pair of categories {(c,c') defines a
binary diagonal matrix Mcc, > with the element i equal to zerc if i nor in ¢ nor
in ¢'. The loss function is

_ ok T T T
o= I 4 Lo tr(X- ycc,acc,) MCC,(X ycc'acc') (20)

We impose the ordinal continuous restrictions on Yoot i.e. ¥s corresponding with
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¢ is not allowed to be smaller than v; corresponding with c'. Geometrica.l’iy we
make the demand that all pairs of categories can be separated by hyperplanes. In
other words we want the convex extensions of k clusters of points not to overlap.
This is of course quite different from dividing a k category variable into k

binary continuous variables, because this only requires that every category can

.be separated from the remaining k-1 categories together. See fig. 1.

CONVERGENCE

The loss function in its basic form, i.e. Mj = I, for all j, is

T(x - y.ab) < (21)

m ! T
c=ZI, . tr (X-y.a.)
( YJ J J d

J=1
The loss ¢ must be minimized over three sets of parameters y,a,X under the
restrictions XTX =T, a.Ta = 1, and ye K. We omit the variable subscripts because
this is more convenient and it does not influence the results in this paragraph.
The idea is that each substep of the algorithm minimizes the loss ¢ over one set
for fixed values of the other two sets of parameters. Each iteration cycle
consists of three substeps. In the beginning of an iteration we start with yo,
al, x°. Each iteration gives us three updates y—l-, a-i-, XjL each of which

conditionally minimizes the loss 0,

Subprob lems

0

To find the minimizing update y+ with a® and X° is a cone regression problem,

which has a unique solution (De Leeww, 1977).

Finding an a.+ with y.lT and X is an ordinary least squares problem with a

unigue solution. The component of ¢ depending on a is

o (a) = tr (X - ya')"(X - ya) (22)
=tr X'X + tr ay 'ya' - 2tr X ya' (23)
=p + ala - 2 aTXTy (2k)
We have to minimize this over a satisfying a'a = 1. The solution is
T 1
o = Xo'ry'l' / (y* X°X°Ty+) 3 . (25)
+ o ot t . +TF
Finding a X which minimizes ¢ with a and y- under the requirement X’ X =1

is an orthogonal prucrustus problem, which has an unique solution if and only if
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the p-th singular value of the matrix i Zj: y.aJ. is greater than the (p+1)-th
singular value (Cliff,1966).

7t
d
Properties of the algorithm

The loss function decreases except at a stationary point

Because all the suboperations are continuous operations the transformstions

k k+1
¥ ¥
k I RN

X ol

are continuous.

Because ara =1, XTX =1 and yTy = aTXTXa € 1 all our updates are in a compact set.

Convergence

Define uk as the parameterset of the k-th iteration
® as the operation of the three step algorithm
G as the los3, bounded from below
Suppose the algorithm generates an infinite sequence uk, none of the uk is a

stationary point,then

o) > o) 5 o (26)
o(u) = (27)
o belongs to the compact set u (28)

From (26) it follows that U(uk) converges to *

Bolzano-Weierstrass shows that uk has an accumulation point u , i.e. there is a

* .
subsequence (ul) such that u:L > u . Define (ulH)

v+1
subsequence (u

. This segquence again has a
) converging to, say, u . And finally we construct (u') which
. . *
is a subsequence of (ul) and which converges consequently to u . For example
iz (o) ie ol ,0(3) 50 () (9)

3reee

then () is u(2)’u(h),u(6),u(B)’u(1o),

(2)’u(6)’u(10)
(1) _(5) (9)

then (u') is u ISP RN R

if (uv”) is u

3 enene

ES 3 *

v ® (u') it follows that u =& (u)

Because ¢ is continuous and u
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Because O is continuous and O(uk) + g it follows that of(u ) = o(u)
But, if u is not a stationary point then olu ) > G(u*), because of u;'“K = o(u
Thus u is stationary. We have proved that all accumulation points of uk are

stationary points with the same function value O .

.COMPUTER PROGRAMS

The several forms of PCA discussed in this paper are incorporated in two computer
programs: HOMALS and PRINCALS. HOMALS entails the Guttman-Hayashi-Benzécri branch
of PCA for strictly nominal dats. PRINCALS combines the " non-metric "
generalizations of the vector-model with the HOMALS approach but the application
is restricted to discrete or discretized data. More information about algorithms,
size, details of the programs and several examples and applications are to be
found in Ven Rijckevorsel & De Leeuw (1978) for HOMALS and in Van Rijckevorsel &
De Leeuw (1979) for PRINCALS. Both programs are written according the ANSI Fortran

conventions. They are available from:

Department of Datatheory
Faculty of the Social Sciences
Upiversity of Leiden

Leiden

The Netherlands
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