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1. INTRODUCTION

In Gifi (1981a, 1988) a large number of multivariate analysis methods are
organized in a single general framework. The key method in this system is
homogeneity analysis, also known as multiple correspondence analysis (cf. Chapter
1). The Gifi system is inspired by ideas from multidimensional scaling, in
particular by the central role of Euclidean distance in the representation of
complex multivariate data. The basic data we want to represent geometrically are
categorizations of n objects by m variables. Although the assumption that the
variables are discrete and assume only a finite number of values is not essential,
and can even be made without any practical loss of generality, it is true that in the
current versions of homogeneity analysis categorical variables with a small
number of categories play a central role. Variables with a large number of
possible values, or even ‘continuous’ variables, can be incorporated in theory, but
the implementations of the techniques more or less expect a small number of
categories. If the number of categories is very large, say close to the number of
objects that are classified, then homogeneity analysis as currently implemented
(Gifi, 1981b) does not work very well. It will tend to produce unsatisfactory and
highly unstable solutions, in which ‘chance capitalization’ is a major source of
variation (cf. also Chapter 2).

There have been various attempts to make the solutions more stable by
imposing restrictions that reflect, in some sense, the prior information we have

55



L}
56 3. BEYOND HOMOGENEITY ANALYSIS

about the variables. In De Leecuw (1984a) these restrictions are classified into
rank-restrictions, cone-restrictions and additivity-restrictions. Imposing restric-
tions decreases the number of free parameters. This means, roughly, that there
are more data values per parameter, which can consequently be determined in a
more stable manner. Rank-restrictions and cone-restrictions make it more easy
to deal with variables having a large number of categories, but in several respects
their treatment remains somewhat unsatisfactory. In many multidimensional
scaling programs there are options for transformation of the variables that are
‘smooth’ or otherwise ‘continuous’. There is no such possibility in the current
homogeneity analysis programmes. In this chapter we shall try to extend the
basic geometry of homogeneity analysis in such a way that continuous variables
fit in more easily using the coding systems as discussed in Chapter 2. A
fundamental role in this extension is played by the ‘B-spline basis’ and its ‘fuzzy’
generalizations, which is introduced here in a purely geometrical way, that is
mainly due to van Rijckevorsel (1987). This additionally indicates more clearly
how homogeneity analysis generalizes the various forms of non-metric principal
component analysis (¢f. Chapter 1). Combination of the various options creates a
very flexible new type of homogeneity analysis. It is highly unlikely that all
possible combinations will be equally important in practice, in fact we suspect
that some of the less restricted forms will again tend to produce very unstable or
even ‘trivial’ solutions. Nevertheless it is satisfactory from a theoretical point of
view to show exactly what the choices are that one has to make, even if some of
the possible choices may be quite unwise in practical situations.

2. SIMPLE HOMOGENEITY ANALYSIS

We start with a brief recapitalization of the technique of homogeneity analysis
introduced in Chapter 1, without any of the frills discussed by Gifi (1981a, 1988)
or de Leeuw (1984a, 1984b). The data are m variables on n objects, i.e. there are m
functions defined ona common domain {1, 2. . ., n}. We suppose that the range
of function j has k, elements, and we code function j by using the n x k ; indicator
matrix G;. Matrix G ; is binary, it has exactly one element equal to one in each row,
indicating into which element of the range the object corresponding to this row is
mapped. Thus the rows of G, add up to one, and the matrix D,=GG;is diagonal,
and contains the univariate marginals. G, = GG, is the cross-table of variables j
and [ and contains the bivariate marginals. This notation is illustrated in detail in
Chapter 1.

The purpose of homogeneity analysis is to map both objects and variables into
low-dimensional Euclidean space R” (where p is dimensionality, chosen by the
user). We want to do this in such a way that both objects and categories of the
variables are represented as points, and in such a way that an object is relatively
close to a category it is in, and relatively far from the categories it is not in. Of
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rse this implies, by the triangle inequality, that objects mostly scoring in the
e categories tend to be close, while categories sharing mostly the same objects
| to be close too. The extent to which a particular representation X of the
cts and particular representations Y, of the categories, satisfy the desiderata
omogeneity analysis is measured by a least squares loss function. This is
ned as

o(X; Y,, ..., Y=Y t(X-G,Y)y (X—G,Y). 2.1)
J

rder to prevent certain obvious trivialities we require that the n x p matrix of
cts scores X is normalized by w'X'=0and X' X =nl. Here u is a vector with all
1ents equal to one, and 7 is the identity matrix. We do not normalize the m
rices of category quantifications Y, which are of order k; x p. Using (2.1) and
normalization conventions we can now give a more precise definition of
10geneity analysis. It is to choose a normalized Xand Y,,..., Y, insucha
that (2.1) is minimized. For additional interpretations of the loss function, in
1s of consistency discrimination and homogeneity, we refer to Gifi (1981a)
de Leeuw (1984a). In this Chapter we more or less ignore the algorithmic and
istical aspects of the homogeneity analysis techniques, and concentrate on the
metry on which the loss function is based.

3. PICTURES OF LOSS

[able 3.1 we have presented a small example with ten objects and three
ables. The objects are ten cars, the variables are price (in $1000), gas
sumption (litres per 100 km, on the expressway) and weight (in 100 kg). The
, are taken from Chapter 6, Table 6.1. In order to prevent possible
inderstandings we must emphasize that Table 3.1 in this chapter is not at all
esentative for data usually analysed with homogeneity analysis. In fact, in
t practical applications of the technique, the number of objects and the

Table 3.1. Car data

Price Gas Weight

vette 5.6 69 9.7
ge Colt 57 5.1 88
nouth Horizon 6.3 5.5 929

Mustang 7.6 6.7 12.0
tiac Phoenix 8.6 69 12.1

ge Diplomat 94 10.2 15.5
vrolet Impala 10.1 1.5 16.9
k Regal 10.5 7.8 15.0
C Eagle 10.7 11.7 15.7

mobile 98 13.3 8.7 18.3
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number of variables is much larger. Moreover in our small example all variables
are numerical, which is also not typical for most homogeneity analysis
applications. .

The data in Table 3.1 cannot be used directly in homogeneity analysis. They
must first be made discrete or categorical. This is done by grouping the values of
the variables into discrete categories, which can, of course, be chosen in many
different ways. One possible, fairly crude, categorization is given in Table 3.2.
Observe that there are three cars with profile (1, 1, 1), and two cars with (2, 1, 2).
Thus there are only seven different profiles for these ten cars, out of possible
3 x 3 x4=136 profiles. A finer discretization would give more possible profiles,
more different actual profiles, and also more ‘empty cells’, i.e. more profiles that
do not occur. The finest discretizations is the ranking given in Table 3.3. Here
there are 10° = 1000 possible profiles, of which only 10 are in usé. Thus 99 per cent
of the cells are empty. Observe that in constructing Table 3.3 from Table 3.1 we
have arbitrarily broken a tie in variable 2 (Chevette and Pontiac Phoenix both
score 6.9 in gas consumption).

Table 3.2. Car data, discrete

Price Gas Weight

Chevette

Dodge Colt
Plymouth Horizon
Fort Mustang
Pontiac Phoenix
Dodge Diplomat
Chevrolet Impala
Buick Regal

AMC Eagle
Oldsmobile 98
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Table 3.3. Car data, ranked

Price Gas Weight

Chevette

Dodge Colt
Plymouth Horizon
Fort Mustang
Pontiac Phoenix
Dodge Diplomat
Chevrolet Impala
Buick Regal

AMC Eagle
Oldsmobile 98
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Now suppose we choose object scores X in two dimensions, and category
antifications Y;also in two dimensions. We have plotted the objects scores we
ve chosen as ten points in Figure 3.1. Also given in Figure 3.1 are the three
ints corresponding with the categories of variable 1, price. To make a picture of
s, for variable 1, we have connected all objects with the category point they
long to, according to variable 1. Loss-component 1 is simply the sum of
uares of the line-lengths drawn in Figure 3.1. We can make a similar picture for
riable 2, if we also choose Y,. It is important to realize that we have chosen X

.CC <FM Cl
. 1eDC 20PP 36 BR 40
oM

- PH -DD *AE

Figure 3.1. Loss variable 1, arbitary solution

d ¥, completely arbitrary, and not by any optimality considerations. They are
t, in any sense, the solutions given by homogeneity analysis. In fact they are
erely candidates for the solutions, and it is the purpose of the technique to find
tter candidates. Another important point is that we can also make ‘dual’
ctures, in which we plot all Y, as points together with a single object point. The
ss ‘due to object i’ can now be represented by drawing lines from the object
int to all category points it is in. Such plots, as well as the plot in Figure 3.1, are
1b-plots’ of a large plot which contains all object points and all category points,
d which has a line for each element equal to one in each indicator matrix. This
iper-plot’ will generally look somewhat messy, so it is better to present it in
yers'. In Figure 3.2 we have presented the optimal solution computed by
ymogeneity analysis, i.e. the optimal object scores and the optimal quantifica-
ons of the categories of variable 1. It is clear that the line lengths are shorter for
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Figure 3.2. Loss variable 1, optional solution

the optimal solution. For other types of plots useful in homogeneity analysis we
refer to Gifi (1981a, 1981b, 1988).

4. RANK RESTRICTIONS

In simple homogeneity analysis category quantifications can be anywhere in p-
space. From equation (2.1) it follows that optimal category quantifications are
centroids of objects points in the categories. This is illustrated in Figure 3.2. In
fact in Figure 3.1 category quantifications of variable 1 are also optimal for the
given object scores, only the object scores are very far from optimal in this case.
Because of the centroid-property of optimal category quantifications it follows
that their weighted average, with weights equal to the marginal frequencies, is the
origin. This is the only restriction on the relative position of the quantifications of
the categories within a variable. Now consider the situation in which variables
have a range which is ordinal or even numerical. This constitutes a form of prior
information which is not used by simple homogeneity analysis, and which
consequently may get lost in the representation computed by homogeneity
analysis. If we look at Figure 3.2 the categories of variable 1 are represented in the
‘correct’ order. This is true if we measure order along the horizontal axis, and
even more clearly true if we measure order along the ‘horseshoe’ on which all
objects lie. For variable 2, gas consumption, the situation is quite different,
however. Only Dodge Diplomat and AMC Eagle are in category 3, which means
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at the optimal quantification of the category will be the midpoint of the line
nnecting DD and AE. Category 2 contains CI, OM and BR, and will be
antified close to CI. Category 1 will be between cluster CC, DC, PH and cluster
> FM. Thus both on the horseshoe and on the line the categories will project in
> order 1-3-2, which is contrary to our prior information. In this chapter we
cuss geometrically inspired methods which both prevent the horseshoe and
ke it possible to impose our prior information.

A familiar way to get rid of the horseshoe is to do this by imposing rank-one
trictions (van Rijckevorsel, 1987). By this we mean that we require all category
antifications of a variable to be on a line through the origin of p-space, with
ch variable having its own line. In matrix notation this means that we require
=2z,a), i.c. the k;x p matrix Y, must be of rank-one. In Chapter 1, in order to
stinguish the various types of category quantifications that resuit from this idea
¢ Y, are called multiple category quantifications, while the z; are called single
tegory quantifications. The a; are the loadings of variable j. We now minimize
e loss function (2.1), with the provision that for some variables (but not
cessarily for all) we use the restrictions Y;=za). Variables for which the
strictions are imposed are called single variables, variables without restrictions
e multiple variables. A program for homogeneity analysis with mixed multiple
d single variables is discussed by Gifi (1982).

In order to study the geometry of single variables we expand the corresponding
ss component first. This gives

tr(X—G,Y)) (X—G;Y)=tr(X - G;z;,a)) (X —Gjz;a)
=np—2a;X'G;z;+(2;G;G;z)) (aja;). 4.1)

ow let g;=G;z;, and normalize z, such that u'q,=0 and g)q,=n. Such
yrmalization is used merely for identification purposes, because z, only occurs in
e product z;a;. Using the normalization we find

tr(X—G,Y)Y (X-G,Y))=n(p—1)+(q,— Xa)) (q,— Xa)). 4.2)

his shows, in the first place, that single loss cannot possible be zero if p is larger
an one. It is always at least n(p—1). It is equal to n(p—1) if all objects in a
tegory project in the same point on the line through the origin anda;. Or, to put
differently, if categories define parallel hyperplanes orthogonal through the line
fining the variable. All objects in a category must be located in the hyperplane
" the category. The elements of z; are the signed distances to the origin of the
tegory hyperplanes, i.e. the location of the projections on the line defining the
riable. In the case of non-perfect fit the loss is simply the distance of each object
vint from its category hyperplane, or, more precisely, the squared distance.
igure 3.3 illustrates this for a particular choice of X, z,, and a, in our small car
cample. Again no optimality considerations are used here, in fact we have not
ven paid attention to the appropriate normalizations. It is clear that rank-one
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Figure 3.3. Single nominal loss, variable 1, arbitrary solution

restrictions will tend to make horseshoes impossible, or at least highly unlikely. It
may not be clear yet how they can be used to impose ordinal or numerical prior
information. Before we proceed to explaining this, remember that the use of
single variables is related to performing a principal component analysis as in
Chapter 1.

5. CONE RESTRICTIONS

Rank-one restrictions induce an order on the categories of the variable, even if we
do not know the order beforehand. The induced order is given by the projections
on the variable vector, or by the order of the category hyperplanes. In fact the
category hyperplanes even introduce a single numerical scale for the categories of
a variable, given in the vector z. Now the induced ordinal or numerical
information may or may not correspond with our prior knowledge. We use cone
restrictions if we impose the constraint that the induced order must be the same as
our prior order, and the induced scale must be the same as our prior scale.
Numerically these are restrictions on the elements of z;. Either they must be in the
‘correct’ order, for single ordinal variables, or they must be equal to a given
normalized vector, for single numerical variabies. Observe that the type of a
variable refers to the constraints we impose, it does not reflect some intrinsic
property of the variable. We use the term ‘cone restrictions’ because the feasible
choices for z; form a polyhedral convex cone in k-space for ordinal variables, and
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ne-dimensional subspace, which is a sort of degenerate cone, for numerical
riables. It is also possible, as is done in Chapters 4, S and 6, to formulate our
trictions in terms of ¢;=Gz,, i.e. in n-space or in the scalar-product space of
tors g, (j=1, ..., m). No restrictions on z;, defining single nominal variables,
ines a k-dimensional subspace in n-space. Ordinal and numerical restrictions
ines subcones and subspaces of this k-dimensional subspace.

f the z, are completely given, by restrictions taken together with normaliza-
ns, then homogeneity analysis becomes identical with principal component
lysis, cf. Chapter 1. This is, in a sense, one of the endpoints of the continuum of
mogeneity analysis techniques. All variables are single numerical; the other
Ipoint has all variables multiple nominal. This is what we have described earlier
simple homogeneity analysis or multiple correspondence analysis. In Figure
we give a two-dimensional principal component analysis representation of
- small example, using the geometry or homogeneity analysis.

“igure 3.4 results from analysing Table 3.2. It is clear, of course, that the
lysis of Tables 3.1 and 3.3 would give different results in general. Table 3.3 is
te interesting in this respect. For Table 3.3 the indicator matrices G, are
mutation matrices. If we substitute them in (2.1) it is obvious that loss can
ays be made equal to zero by letting X be an arbitrary n x p matrix, and by
ing Y¥;=GX. Then G;Y,=G,G)X=X. In the same way single nominal
iables can always be fitted perfectly. Choose X and a; arbitrarily, and set
G;Xa;. Then q,=Xa;, and loss is minimized by (4.2). In other words:

Figure 3.4. Single numerical loss, variable 1, optimal solution
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non-trivial analysis of rankings is possible only if we make all variables either
single ordinal or single numerical. It is also interesting to compare the single
quantifications in q,= Gz, with the original scores in Table 3.1. Clearly plotting
the elements of g, versus the original scores will give a step-function. We have
discreticized our variables, and as a consequence every object in the same
discretization interval gets the same quantification in the g-vector of the variable.
The more intervals, the less crude the transformation given by the step-function
will be, but no matter how fine we choose the discretization, the transformation
will always be a step function. And step functions do have several drawbacks as
we can verify in Chapter 2. This is one of the main reasons why we say that
homogeneity analysis as currently implemented by Gifi (1981b, 1982) has a
discrete bias. Step-functions are perfectly natural for variables which have a small
number of possible values to start with, or for purely nominal variables for which
we have no prior numerical information. For ‘continuous’ numerical variables,
such as the three variables in our example, transformation by step-functions
ignores the prior infotmation that our variable was originally continuous, and
can also assume all intermediate values between the end-points. Thus we now
know how to incorporate numerical and ordinal information, but we do not
know yet how to incorporate ‘smoothness’ into homogeneity analysis. This
problem will be discussed below, but first we have to fill a number of gaps that
have been left open in the combination of various options we have discussed up to
now,

6. GAPS IN GIF1

In the previous sections we have discussed single numerical, single ordinal, single
nominal, and multiple nominal variables. We did not discuss multiple ordinal
and multiple numerical. If only for aesthetic reasons it is interesting to investigate
if these remaining types of variables can also be given a simple meaning.
Moreover we have distinguished single and multiple variables. For single
variables we required that rank (Y)) was less than or equal to one, for multiple
variables there were no rank restrictions, which means that we ‘required’ that
rank (Y;) was less than or equal to min (p, k,—1). It is k;— 1 and not k; in this
upper bound, because of the fact that the rows of Y, have a weighted mean of zero.
Now if p=1 there is no difference between multiple and single. If p=2 then for
variables with more than two categories single requires that rank (V) is less than
or equal to one and multiple that rank (Y)) is less than or equal to two. There is no
gap between the two options. But for p=3, and k; larger than three, single
requires rank one and multiple requires rank three as the upper bound. Thus
there is a gap. We can insert another option, which requires rank (Y)) to be less
than or equal to two. This general rank restriction, which can be between single
and multiple, was already discussed in de Leeuw (1976), but it was not
incorporated in the subsequent developments of the Gifi system.
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he loss function, with general rank constraints, can be written as
o(X; Yy ..., V)= (X=GZA)) (X—G,Z,A). (6.1)
i

e Z,is k,xr;, and A, is pxr;. The r; are the required ranks for variable j.
ymetrically the constraint means, of course, that the category quantifications
t be in a r-dimensional hyperplane through the origin. If Z;D,Z,=nl, then
for variable j satisfies

a(X, Y)=nlp—r)+t(X4,—GZ) (XA, —-GZ). 6.2)
= (A4, | ...|4,) and 0=(Q,]... [Q,,,):(G,Z,| ...|G,Z.), then
o(X; Y, ..., Y )=nm(p—r)+tr(X4A - Q)Y (XA-Q). 6.3)

s looks very similar to (4.2), but remember that in (6.3) each Q, consists of r;
10gonal quantifications of the same variable, i.e. of r; copies (compare de
uw, 1984a; Tijssen, 1984; de Leeuw and Tijssen, 1984). Again, geometrically,
have minimum loss if the category points are in an r-plane, and all object
nts are on lines perpendicular to the plane, which cross the plane in the
ategory points.

yeneral rank restrictions now make it possible to define r,-nominal, in which
re are no further restrictions on Z, There is also r-numerical, in which the r,
imns of Z; are known orthogonal k-vectors. And, finally, there is r-ordinal, in
ch all columns of Z, must be in the appropriate order. For r,-nominal and
umerical we can require, without loss of generality, that Z\D,Z;=nl. For r,-
inal such a constraint cannot be imposed, and we have to refrain from
malizing Z, and/or A,. It is clear, of course, that general rank constraints,
pled with measurement restrictions, generalize our previous notions of single
| numerical, and fill the gaps in the system. In fact it opens completely new
sibilities: we can require that the first ‘copy’ in Z; is ordinal, while the
aining copies are nominal, and so on. Again we do not know how practical
se new options are. We have discussed them because they fit naturally into the
s, and also because they can be incorporated without much ado into the
nogeneity analysis algorithms that are already there.

7. PSEUDO-INDICATORS

Chapter 2 it is illustrated that a more satisfactory analysis of continuous
iables becomes possible if we generalize the notion of an indicator matrix.
ypose we continue to use the same notion of loss, with the same types of
rictions on the category transformations, but we do not suppose that the G;
indicator matrices. They must still be known n x k; matrices, but they need not
binary any more. In a sense we have already gone a step in this direction. If a
iable is r-numerical, then Y,= G(Z,4)) = (G,Z,)4;. Suppose, for instance, that
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the Z; are polynomials, orthogonal with respect to the marginals. Then G,Z, are
orthogonal polynomials in n-space, and we can interpret our analysis as an
unrestricted analysis using an n x r; basis of orthogonal polynomials instead of
the indicator matrix G;. Although this is clearly a valid interpretation, it is not
exactly what we have in mind.

In this section we concentrate on so-called fuzzy codings, collected in pseudo-
indicator matrices. Indicator matrices are characterized as pseudo-indicators
with bandwidth unity, cf. Chapter 2. Piecewise linear B-splines define pseudo-
indicators with bandwidth two, and so on. In this chapter we do not care about
the origin of the pseudo-indicators, for this we refer to Chapter 2. We simply
assume that data are coded in this way, and we look for the geometrical
interpretations of such a coding. In Table 3.4 we have a fuzzy coding of our small

Table 3.4. Piecewise linear coding car data

Price Gas Weight
Chevette 0.88 0.12 000 0.62 0.38 000 006 094 000 0.00
Dodge Colt 0.86 0.14 000 098 002 000 024 076 0.00 0.00
Plymouth Horizon 0.74 026 000 090 0.10 000 002 0958 0.00 0.00
Fort Mustang 048 052 000 066 034 000 000 0.60 040 0.00

Pontiac Phoenix 028 072 000 0.62 038 000 000 058 042 0.00
Dodge Diplomat 0.12 088 000 000 096 004 000 000 090 0.10
Chevrolet Impala 000 098 002 050 050 000 000 000 0.62 038

Buick Regal 000 090 0.10 044 0.56 000 000 000 1.00 0.00
AMC Eagle 0.00 086 0.14 000 066 034 000 000 086 0.4
Oldsmobile 96 0.00 0.34 066 026 074 000 000 0.00 034 0.66

example, which is actually the result of piecewise linear coding. The idea behind
our generalization of homogeneity analysis now is, that we can combine all our
previous options and restrictions with this new coding as well.

In particular we can impose rank-constraints, and impose ordinal or
numerical restrictions.

Because p=2 in our example it suffices to distinguish single and multiple.
Consider multiple nominal. The loss component for variable j vanishes if
X=G,Y,.Inthe coding used in Table 3.4 each X corresponds with two categories,
because the bandwidth in our example is two. The two category quantifications
are the endpoints of a line segment, all line segments for a particular variable are
connected. The object scores must be on the line segment corresponding to the
categories they are in. And not only must they be on the segment, they must also
be in a precise location on the segment, where the location is dictated by the
masses of the endpoints in the coding. This is indicated in Figure 3.5, which is not
an optimal solution of any kind, but it is used to illustrate the loss of variable 1 in
the coding of Table 3.4. The points on the two line segments indicate where the



7. PSEUDO-INDICATORS 67

2
P!
/
oo/ “BR
'I/ A E\ ~
/PP “\
/ RS
/ ‘\
/ FM ‘\
/ AN
pd A
,,‘ PH \_ \o M
cc s DC “\
d ™
\\\
1 \,
N
v
3

Figure 3.5. Loss for multiple piecewise linear, variable 1, arbitrary solution

cars must be given the coding, and given the location of the endpoints of the
segments. In the single case the endpoint must be on the same straight line, and
the object points must project on the places fixed by the coding. Thus there are
parallel lines perpendicular to the line connecting the category points, which
intersect this line at the appropriate places. In the ordinal case the endpoints must
be ordered along the line, such that both within-category and between-category
quantification is ordered (which makes this a somewhat peculiar option,
perhaps).

The geometry of fuzzy or smooth homogeneity analysis with several
applications is extensively treated in van Rijckevorsel (1987). If we study the
transformation which considers g,= G,z as a function of the original data values,
then transformations from pseudo-indicators as discussed in Chapter 2, will
indeed be more smooth than those from indicators. The precise nature of the
smoothness depends on the nature of the pseudo-indicators, for instance on the
bandwidth. In our example the transformations are continuous and piecewise
linear. If we use piecewise quadratic splines, joined in such a way that they are
differentiable at the endpoints, then we get more smoothness (and a bandwidth of
three). The geometry becomes more complicated, because object scores must be
at the appropriate places in the triangle spanned by three endpoints. Successive
triangles are interlocked, because they have one side in common. And so on, for
larger bandwidths, and/or in higher dimensions. The relationship of the object

scores with the multiple quantifications (Y-configuration) and its interpretation
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are to be reconsidered. Several questions do arise: What happens to the principe
barycentrique in fuzzy homogeneity analysis? Are the original (=not coded) data
reproducible from the final configuration? What is the geometrical significance of
the goodness of fit parameters?

7.1. The representation of basis functions

First order B-splines (crisp coding) collapse all values within an interval
into a point. Second order B-splines force all values within one interval to
be on a line. Third order B-splines transform all values to be on the face of
a triangle.

The regular polygon is often used as a triangle of reference for the position
of data points in the basis, cf. Le Foll (1979), Gallego (1980), Greenacre (1984)
and van Rijckevorsel (1987). In this way we can represent at most three
(orthogonal) dimensions, i.e. basis functions, in a plane. This implicitly uses the
property that all fuzzy codes of one data point add up to one. The use of
triangular coordinates is limited to the representation of three basis functions at
the time.

This tool enables us to show the differences between various low dimensional
forms of fuzzy coding in terms of triangular coordinates. The triangle of reference
with the vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) is also known as the triangular or
barycentric coordinate system. The number of coordinates # 0is maximally three
per data point. In Chapter 2 this number is also called the bandwidth of the set of
basis functions.

In the cases (a) and (b) in Table 3.5, one triangle suffices to represent the whole
transformation function because there exist only three basis functions, cf. Figure
3.6: A, B, and B,.

The crisp codes in Figure 3.6 coincide with the vertices. The codes in the fuzzy
areas around the knots are the points on the sides of the triangle. The transition
from first order fuzzy coding into second order codes is clearly because in the
latter case all codes are between the vertices. This automatically leads to second
order B-splines, where all points are on the sides between the vertices and only
coinciding with a vertex, if the data-point coincides with a knot.

Table 3.5. Dimensionality, bandwidth and order of low order fuzzy coding with two
interior knots

Type of coding Order Dimension Bandwidth

(a) Crisp coding 1
(b) First order fuzzy coding 1
(c) Second order B-splines 2
(d) Third order B-splines 3
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Figure 3.6. The Public spending in the Netherlands between 1951 and 1981 coded by

crisp coding (A), demi-discrete (B), trapezoidal (B2), piecewise linear (C) and quadratic

coding (D), all represented by triangular coordinates after van Rijckevorsel (1987), see
also Chapter 2

The first degree fuzzy coding represents three intervals that have two
coordinates #0 on four basis-functions, cf. Figure 3.6 (C). One triangle is not
sufficient because of the dimensionality of the basis. One way of solving this is by
using an additional triangular coordinate system that has one dimension, i.c. one
side between two vertices, in common with the first triangle, in order to maintain
the simplicity and parsimony of this approach. The first triangle covers the first
two (out of three) intervals and the second triangle the last two (out of three)
intervals. There exists an overlap of one interval, and they have two vertices in
common; i.e. the triangles are interlocked.

The second degree coding of Figure 3.6 (D), is & code with three different
coordinates #0, that add up to one, which is represented by a triangle of reference
in Figure 3.7.
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Figure 3.7. The fuzzy coding of data point i by second degree B-splines: {g, =0.25,
g,=0.40, g, =0.35}, represented by the barycentric coordinate system

It is clear that, if one of the three coordinates equals zero, the corresponding
point is on the side of the triangle. The coordinates of the knots are t,: {g, =0.8,
9,=02,9,=00}and¢t,,,: {g,=00,9,=0.7,9,=0.3}. Note that in every knot
one of the codes is equal to zero. Ergo the knots are on the sides of the triangle and
the points within the interval are on the face of the triangle. All data values
between t, and ¢, , are on the quadratic curve between t,and ¢ ., ;. Each basis
vector is a quadratic function and hence the triangular representation is a
quadratic as well.

In this way the generalization to second degree codes, cf. Figure 3.6 (D), is easy
to understand. The restricting parameter has evolved from a point, via a line
segment, to the face of a triangle. A second degree B-spline is a quadratic function
on the face of the triangle of reference smoothly joining at two sides.

7.2. The build-up of a transformation function

In crisp coding data points are represented as grouped points, by first degree B-
splines as individual points on line segments and by second degree B-splines as
points on curves. We know from Chapter 2 that the global transformation
function is equal to a piecewise function.

Say, we use a triangle of reference to represent the coding of a variable. Then we
can observe the same phenomena, i.e. point, line segment and curve in the
barycentric representation. If we inspect the functional coefficients in the space of
the object scores, which is the usual way of inspecting the parameters in
homogeneity analysis, we observe the same phenomena: point, line segment and
curve. This is to be expected; the sets of functional coefficients span the subspaces
that geometrically restrict the object scores. In case of perfect fit the object scores
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collapse, not into the functional coefficients, but into the regular polytopes
spanned by these coefficients. They span points, line segments and curves on the
face of a triangle. This means that a perfect fit in fuzzy homogeneity analysis is
trivial in a different way from a perfect fit in crisp homogeneity analysis. The
latter demands that all data points collapse perfectly into a few categories. This
seems less realistic than demanding that all data points within an interval should
form a linear or quadratic function, which permits the expression of a
considerably larger amount of variation in a controlled way (sce Figure 3.8).

Note that the transformation G,Y; coincides with the functional coefficients in
crisp coding, it connects the coefficients in first degree B-splines by straight lines
and in second degree B-splines it forms a quadratic curve that contains only those
functional coefficients that correspond to the exterior knots.

Figure 3.8. The functional coefficients Y, (=dots), the weighted triangles of reference

(=dotted lines) and the global multiple transformation functions G,Y, (=solid lines) in

the X-space. Represented for crisp coding (A), first degree B-splines (d) and second degree
B-splines (D)

7.3. Goodness of fit

The goodness of fit of point i on variable j is defined as is the custom in
homogeneity analysis: the squared euclidean distance between the observation
score x, and the corresponding value on the global multiple transformation
function g,;Y;. See the dotted lines in Figure 3.9.

The subspaces, spanned by the functional coefficients, can be interpreted
geometrically as restrictions for the corresponding object scores. Using crisp
codes, the objects scores should be as close as possible to the point Y),; using hat
codes (=second order B-splines), the object scores should be as close as possible
to the corresponding points on the line segments between the points Y, , and
Y k41588 for the bell codes (= third order B-splines) the object scores should be
as close as possible to the curve within the face of the triangle, spanned by the
functional coefficients Y, ,, ¥; 4., and ¥} ,,,. We can now develop a schematic
geometrical account of what happensto a variable in fuzzy homogeneity analysis.

The data are coded respectively by all five nearly-orthogonal fuzzy codes
discussed in Chapter 2. The symbols used in the Figures 3.10to 3.1 3are A (crisp),
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Figure 3.9. The euclidean distances between x-points and the global multiple
transformation function in one interval for three different ways of coding
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Figure 3.10. Five different types of fuzzy coding functions with the represent-
ations by triangular coordinates; see the text for the interpretation of the labels
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B1 (semi-discrete), B2 (trapezoidal), C (first degree B-spline) and D (second
degree B-spline). The obtained basis vectors are represented by triangles of
reference: maximally three basis vectors per triangle. A triangle of reference can
represent three intervals in case of zero degree codes, two intervals in case of first
degree codes and one interval in case of second degree codes (and no intervals for
higher degree codes).

The basis vectors, and thus the vertices of the triangles of reference, are
weighted with respect to the p-dimensional X configuration for maximal
homogeneity by the least squares estimates Y: G,Y,, while G,Y, is the
quantification of data points in the kth interval, see Figure 3.11.

The weighted basis functions expressed by the sides of triangles, form together
the global multiple transformation function in the p-dimensional space, see
Figure 3.12. Nothing new is introduced here. The procedure is extensively
discussed in Chapter 2 and in this chapter. Each side of the triangle is
geometrically speaking, separately stretched respectively shrunk, by the least
squares estimation.

e

A c . D

Figure 3.11. The weighted triangular representations of three different types
of fuzzy coding: see the text for the interpretation of the labels
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A

Figure 3.12. Weighted triangular representations (dotted) and resulting multiple
transformation functions (solid) in the first two dimensions of fuzzy homogeneity analysis,
based on three different types of fuzzy coding

The weighted triangles have a distinct relationship with the X-configuration:

It follows from this picture that bandwidth three or more does not combine
naturally with single quantification, because single quantification makes the
triangles degenerate to straight lines. This is no problem analytically, but it
makes the geometry of loss far less interesting. In general we think that for
practical purposes a bandwidth larger than two is probably not very interesting,
unless data are very well behaved indeed.

8. RELATED WORK ON FUZZY HOMOGENEITY ANALYSIS

The combination of homogeneity analysis and fuzzy coding is fairly recent. The
development of fuzzy set theory, comprehensively reviewed by Bezdek (1987),
took place independently from the development of homogeneity analysis. See
also van Rijckevorsel (1987). Fuzzy coding itself is introduced by Zadeh (1965)
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A

Figure 3.13. Multiple transformation functions and X-points in the plane of the first two
dimensions of fuzzy homogeneity analysis based on three different types of fuzzy coding

and Ruspini (1969) and the first proposals for fuzzy coding in homogeneity
analysis are by Bordet (1973), Guitonneau and Roux (1977) and Ghermani,
Roux and Roux (1977). These early papers mainly adapt continuous data to the
discrete mould of homogeneity analysis and hence try to smooth the inaccuracy
of crisp coding around the knots. The application within homogeneity analysis
seems to be rather accidental; theoretically speaking it could have been any other
crisp technique. In the same vein Martin (1980) derives a probabilistic framework
to this end. See also Chapter 5. The first attempts to incorporate fuzzy coding and
homogeneity analysis are by Le Foll (1979) and Gallego (1980). They both
concentrate on piecewise linear coding. Le Foll generalizes to a larger class of
coding strategies, which he defines as codages complets to be used in a variety of
techniques. The larger part of his work, however, is devoted to an application of
piecewise linear coding within homogeneity analysis on ecological data, referring
to the surface water pollution in the larger surroundings of Paris (France).
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Gallego (1980) concentrates on an application of piecewise semi exponential
coding within several techniques in order to smooth seasonal macroeconomic
data. In this context he discusses linear PCA (on recoded data) and cluster
analysis but predominantly homogeneity analysis.

Some French work on fuzzy coding is marked by the desire to analyse real
valued and categorical data simultaneously within one analysis. Fuzzy coding is
thus a means to incorporate real valued data by coding them into a format that
conforms with homogeneity analysis. And, consequently, because fuzzy coding in
itself increases inertia, much attention is given on methods how this should be
corrected for, prior to further analysis. cf. Guitonneau and Roux (1977) Benzécri
(1980), Gallego (1980) and Greenacre (1984, p. 162).

Another group of French authors prefer to work with a probabilistic
interpretation of fuzzy coding in non-linear analysis, cf. Chapter 5. Martin (1980)
is most outspoken and other work often uses his definition of probability coding,
that a fuzzy code is mainly a transition probability between an observed and an
unobserved variable, cf. Besse and Vidal (1982), Gautier and Saporta (1982) and
Mallet (1982). The idea is that the unobserved random variable is reconstructed
by coding the observed variable. Besse and Vidal (1982) extend this idea to both
variables, observed and unobserved, being categorical and restrict the coding to
the bivariate coding of pairs of variables (not to be confused with the bivariate
coding of pairs of intervals as mentioned in Chapter 2). Ramsay (1982) and Besse
and Ramsay (1986) discuss the (smooth) PCA of data which are functions, cf.
Chapter 4. This work should not be confused with the work of Winsberg and
Ramsay (1983) who consider the isotone polynomial spline transformations of
separate variables as a kind of (probabilistic) optimal scaling. See also the ACE
methodology applied in this context by Koyak (1985), and the work of Winsberg
and Kruskal (1986). Chapter 6 deals separately with the latter.

Apart from these developments there exists another tendency to relate fuzzy
coding within homogeneity analysis to the theoretical non-linear principal
component analysis as defined by Dauxois and Pousse (1976). Fuzzy coding is
then regarded as a way to further the convergence of homogeneity analysisto a
theoretically completely non-linear generalized canonical analysis, where non-
linear variables are non-linearly related. This is linked to the two types of
convergence discussed in Chapter 2. Nearly all the French research in this field
published after 1976 refers to this form of non-linear generalized canonical
analysis. See also Lafaye de Micheaux (1978) and Maliet (1982). The latter
conjectures that the empirical analysis of fuzzy-coded variables is a good
approximation of the theoretical non-linear analysis.

9. PROCESS

In the developments so far the data were coded as (pseudo)-indicators, and these
pseudo-indicators were fixed during the computations. Now let us look at single
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ordinal piecewise linear again. We have already seen that the order of the
category points on the line is fixed in this case, although their precise location is
free. Given the location of the category points, however, the location of the
preferred projection of the objects points on the line is fixed by the coding. This is
what we mean by fixedness of within-category order. This fixedness is contrary to
what is called the primary approach to ties in multidimensional scaling literature,
and also the continuous ordinal option (compare de Leeuw, Young and Takane,
1976, Young, de Leeuw and Takane, 1980, Young, 1981). In this option, which is
incorporated in various non-metric principal component programs, we fix the
order between categories but not within categories. Or, geometrically, given the
line and the location of the category points on the line, the object-point can
project anywhere between the end-points of its category. Loss only occurs if they
project outside their assigned interval.

Given our previous discussion it is easy to see how the idea of continuous
ordinal data can be incorporated easily into our form of homogeneity analysis.
The elements of the pseudo-indicators are not considered fixed any more, only
the location of the non-zero elements is fixed. Thus we know which elements must
be non-zero, we also know that they must be non-negative and they must add
up to one for each row, but their precise values are additional parameters over
which the loss function is minimized. In the single ordinal piecewise linear case
this gives exactly continuous ordinal data as treated in PRINCIPALS,
for instance (Takane, Young and de Lecuw, 1978). But because we have
fitted the possibility of varying the elements of the G, into our general
homogeneity analysis framework, we can combine this option with all other
previous options that we already had. It can be combined with multiple
quantification, and with single numerical quantification. In this last case it
gives the continuous numerical scaling earlier discussed by de Lecuw and
Walter (1977).

There is very little need to elaborate on the geometry of the continuous
versions. It is basically the same as the discrete geometry, only points are not fixed
in intervals, but they can be anywhere in the interval. It becomes perhaps a bit
more interesting to use larger bandwidths with single options, because the
bandwidth now controls the amount of overlap of the intervals corresponding
with the categories. If bandwidth is two, there is no overlap. If bandwidth is three,
successive categories have one common subinterval, and so on. Multiple options
with bandwidth three, in two dimensions, are interpreted in terms of triangles (or
convex hulls). Objects in category 1 must be in the convex hull of category points
1, 2 and 3, objects in category 2 in the convex hull of 2, 3 and 3, and so on.
Successive triangles have one side in common, if they degenerate to line segments
this becomes the overlapping subinterval. It is not at all clear (yet) if these
conceptually very nice options are useful in practice. A theorem in Gifi (1981a,
1988) is useful to illustrate their limitation. It refers to the continuous ordinal
option, with all variables single. The results show that with this option degenerate
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solutions, which locate one object very far away from the others, which are
collapsed into a single point, will be quite common. In fact Gifi shows that in the
situation in which objects are a random sample the minimum of loss is almost
surely equal to zero if the sample size tends to infinity. Van Rijckevorsel (1987)
illustrates with real data that the conceptual nicety can be misleading. We do not
know yet how devastating the results are in practice, but it certainly indicates that
we have to be careful.

Computationally our new options do not introduce any trouble at all. We must
introduce a new subproblem into the alternating least squares cycles of
homogeneity analysis in which the G, are adjusted. This is done for each row of
each G; separately, defining a very small special quadratic programming
problem. Of course we have to exert a little self-control in combining our options.
We have the possibility, in principle, to take a different bandwidth for each
object, or a different rank for each Y,. In fact, looming large in the distance, is the
possibility of further generalizations. We can fix the bandwidth of each variable,
for instance, and determine the optimum location of the non-zero elements. This
is probably very unwise, because the program output will become almost
independent of the data.

It is perhaps convenient to relate existing programs to our general form
homogeneity analysis, in which we choose (a) quantification rank, (b)
measurement level, (c) bandwidth, (d) process for each variable separately.
HOMALS (Gifi, 1981b) has quantification rank equal to dimensionality,
measurement level nominal, bandwidth unity and process discrete. Of course if
bandwidth is unity there is no distinction between discrete and continuous
process. Ordinary principal component analysis has quantification rank unity,
measurement level numerical, bandwidth unity and process discrete. PRIN-
CALS (Gifi, 1982) has quantification rank either one or dimensionality, and
measurement level numerical, ordinal or nominal (but ordinal/numerical cannot
occur together with multiple), bandwidth is unity and process is discrete.
SPLINALS (van Rijckevorsel, 1982, 1987; Coolen, van Rijckevorsel and de
Leeuw, 1982) has quantification rank either one or dimensionality, measurement
level nominal, bandwidth either one or two and process discrete. Winsberg
and Ramsay (1983) have, with some minor qualifications, measurement level
ordinal, quantification rank unity, arbitrary bandwidth, and process discrete.
PRINCIPALS (Takane, Young and de Leeuw, 1978) has quantification
rank-one, measurement level nominal, ordinal or numerical, bandwidth either
one or two, process continuous or discrete. But if the process is continuous
the measurement level must be ordinal, and if the process is discrete the
bandwidth must be one. It is clear that our new homogeneity analysis program,
which only exists in preliminary APL-versions yet, encompasses all these
possibilities and has all previous programs as special cases. Of course it will be
more expensive in terms of time and storage, and more liable to produce
degeneracy.



10. WORDS OF CAUTION 79

10. WORDS OF CAUTION

Homogeneity analysis is a dangerous technique. We use very little information
from the data, and we do not impose restrictions of a strong type on the
representation. This type of program traditionally appeals greatly to many social
scientists, who are very unsure about the value of their prior knowledge. They
prefer to delegate the decisions to the computer, and they expect programs to
generate knowledge. This strategy leads, all too often, to chance capitalization,
triviality and degeneracy. Hypotheses are never rejected, and investigators are
constantly making errors of the second kind. As a consequence results can, of
course, never be replicated. Generalized ‘homogeneity analysis, as we have
developed it here, is a very powerful tool which can contribute greatly to a further
inflation of social science results. By choosing the least restrictive options we can
make the results almost completely independent of the data.

On the other hand it is well known that if we pay too much attention to errors
of the second kind, then social scientists can say abolutely nothing. This is also
considered to be an undesirable state of affairs. It can be circumvented by
concentrating on minute aspects of well-defined small problems, as in laboratory
situations, or it can be circumvented by introducing vast quantities of prior
knowledge, as in sociology. Of course in most cases the prior knowledge is
nothing but prejudice, and it so dominates the investigation that the results
become equally independent of the data.

This defines the dilemma of applied empirical social science. According to the
canons of scientific respectability we can say almost nothing, and the things we
can say are likely to be trivial. There are two ways out of this situation. Either we
impose so much prior knowledge on our problem that the data only marginally
make a difference. This is the rationalistic solution, popular in sociology. Or we
impose so little prior knowledge that the data, including all outliers, stragglers,
idiosyncrasies, coding errors, missing data, completely determine the solution. In
this case the technique is supposed to generate theory. This is the empiristic and
technological approach, popular in applied psychology. Both approaches have,
up to now, not produced much of interest.

Homogeneity analysis is firmly in the empiristic and technological tradition.
Thus it is clear what dangers we have to guard against especially. If we have
reliable prior knowledge, we must incorporate it. It is absolutely necessary to
investigate the stability of the results (Gifi, 1981a; de Leeuw, 1984b). Observe,
however, that stability is not sufficient. A program that responds to any data
matrix by drawing the unit circule is very stable indeed. We also need to gauge the
technique, by comparing analysis with different options on data whose most
important properties are known. For some forms of homogeneity analysis this
has already been done quite extensively (Gifi, 1981a; de Leeuw, 1984c), but apart
from results by van Rijckevorsel (1987) very little is known in this respect about
the more general options discussed here. One strategy, that seems promising, is to
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analyse the same data with various options, from numerical to ordinal, from
bandwidth one to bandwidth two, from discrete to continuous, and so on. In fact,
this defines another form of stability analysis, which seems indispensable in

situations with little prior knowledge.





