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ABSTRACT

A non linear principal components technique is presented.
B-Splines are used as a basis for the non linear transforma-
tions. The method is a generalization of correspondence
analysis, which uses discrete step functions as a basis.
B-Splines give a smoother approximation than step functions
and they are computationally more efficient than orthogonal
polynomials. An application on the Thurstone cylinder data

Ed

is presented.
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1. INTRODUCTION

The technique described here is a generalization of correspon-.
dence analysis (Benzécri, 1973; Hill, 1974; Gifi, 1981;
Bouroche & Saporta, 1980) which uses discrete step functions
as a basis to approximate continuous non linear transforma-
tions. The approximations are optimal in the sense that they
maximize the sum of first few dominant eigenvalues of the *
correlation matrix. The advantage is that the data do not
have to fit the omnipresent linear mould which in many cases
of practical data analysis is far too restricted in its
assumptions.

Optimal continuous non linear transformations are very diffi-
cult to compute except for special cases like the bivariate




380

normal distribution (van Rijckevorsel, Bettonvil & De Leeuw,
1980).

We propose here an approximation based on B-Splines (De Boor,
1978) which is a generalization of the step function
approach. The advantages are that the approximation is still
non linear but smoother than step functions. The jumps at the
breakpoints in the data are not continuous for step functions,
but they are continuous if we use spline functions with order
> 1.

It seems to be the case that the computational loss of
efficiency by using second order B-Splines is negligable,
especially for a limited number of breakpoints.

The example shown is a version of the Thurstone cylinder pro-
blem commonly used in literature to gauge non linear princi-
pal components techniques (Kruskal & Shepard, 1974; Young,
Takane & De Leeuw, 1978; Gifi, 1981).

2. PCA

-

2.1. PCA of numerical variables

There are a number of different ways in which the equations
of PCA can be derived (Rao, 1980; Okamoto, 1968; Le Roux &
Rouanet, 1979). We prefer an approach using least squares
loss functions.

Suppose hl’ cesey hm are real valued random variables de-
fined on a common probability space, We assume that

AVE(hj) = 0, VAR(hj) = 1, where AVE( ) and VAR( ") are
expectation and variance.

We want to find p new random variables Kys -oeee X, 00 the
same space and an m X p matrix A = {aju), U=1l, coaues P
such that

;a) = & (h. -
(1) o(X;A) = & gvmz(hj éajuxu)

is as small as possible. To identify the solution we require
that
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: Y
(2) COV(xu,xv) §

where COV( , ) is covariance, and we require that A'RA is
diagonal, where R = {rji] is the matrix of correlations of the
hj' or rjl = COR(hj,hl).

The solution to this minimization problem is well known since
the time of Peatson (cf MacDonell, 1901). If R = KAZK' is the
eigendecomposition of R, with eigenvalues decreasing along the
diagonal, then the optimal solution for A is A = KpAp, the
truncated eigensolution involving only the p largest eigen-
values. The optimal solution for X is

-1 ?
(3) X_ = 1 k. h.
u u j=1 ju 3
The minimum value of the loss function is
n
I A2
q=p+1 9

s

which is the sum of the m - p smallest eigenvalues of the

(4) Gmin =

8Bim

correlation matrix.
2.2. Non linear principal components analysis

We now generalize the results of section 1 by defining the
loss function

),

1 m
(5) 0(8;X;A) = = ] VAR(¢ (hy - § 3 5%y
=1

u=1
where the ¢j are real valued functions satisfying
AVE(¢j(hj)) =0, VAR(¢j(hj)) = 1.
The idea is that in non linear principal components analysis
the loss function is minimized over X and A, as before, but A
also over the vector of transformations ¢. This form of non
linear principal components analysis is useful if we are not
exactly sure about the scale level of our variables hj, that
is if our variables are not strictly numerical, and also if
we expect that a non linear transformation of the variables
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18 called for to produce a petter and more stable fit to the
bilinear or inproduct approximations of PCA. It is possible

to generalize non linear PCA even further, by requiring that
the transformations ¢, are restricted to be in specified cones
of transformations Kj' pbut in this paper we only treat the
unrestricted case.

It is clear that minimizing o(9;X;A) over all the three sets
of variables amounts to the same thing as maximizing the sum

of the first p eigenvalues oer(¢), where
(6) (R(°)}jz = COR(¢j(hj). ¢2(h1))-

This follows trivially from the theory of the previous

section.
3. NON LINEAR TRANSFORMATIONS FOR p =1

We want to f£ind non linear transformations ¢j(h.) with

J
E(¢j(hj)) = 0 of real valued random variables hj'
j=1, ..., mand a new random variable x with E(x) =0 in

such a way that x resembles in a least squares sense the
transfor@ations ¢j(hj), j =1, ..., m as much as possible.
Accordingly we can formulate the following loss function for
non linear transformations that is to be minimized over a
real valued random variable x and non linear transformations

¢j with .

= - = . 2 o
(7) ¢j € ij { ¢-AVE(¢j(hj)) 0 ; AVE(¢(hj) ) < }
Minimize o over x and ¢

(8) o(x,¢)

Rl

I VAR(x = ¢4(hj))

with normalizations AVE(x) = 0 and VAR(x) = 1.
pefine o(x;*) = min { o(x;¢) : ¢ } then according to the
definition of conditional expectation this leads to
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E R

(9) g(x;*) =1 - =7 VAR(E(x[hj)).

We are thus looking for a random variable x such that the
average correlation ratio of x with Qj(hj), j=1, ..., mis
as ‘large as possible. This ratio is the squared correlation
coefficient if our transformations ¢ were restricted to be
linear.

Ancther interpretation is possible if we define o(#%;4) =
min { o{(x;¢):x }. The minimum is attained for x proportional
to } ¢j(hj).

It follows that minimizing o(#;¢) over ¢ is equivalent to
maximizing the sum of all covariances of the 0j(hj), while
keeping the sum of the variances to a constant. This is also
equivalent to maximizing the dominant eigenvalue of the
correlation matrix R(®).

Define for every space 3 cf (7), a complete orthonormal
basis gjs' s =1, 2, Ry such that for every s and t

_ t
(10) COVlg, (hy), g5, thy)) = &,

where g;t is the Kronecker delta. Then (Cst)jz is defined as
the covariance between the transformations gjs(hj) and
gepthg).

Define C as the supermatrix

’ ]

st sS

| )
with an infinite number of submatrices cst’ s =1, 2, ....

and t = 1, 2, ...., all of order m.
We can express the transformations of every variable as
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(11) *i(h)) ) ujﬂgjs(hj)

with linecar weights ajs and hence

i

(12) cov(¢j(hj). ¢, (hy)) = é % ajsaltCOV(gjs(nj),get(hz))
The sum of covariances between transformed variables is
(13) JYartc_,  a

s t s st 't
and the sum of variances is

(14) z a; as
s

This leads to the following characteristic equation

(15) ] Cop 3, = 23,
£ :

We thus have to compute’ the dominant eigenvalue of an infinite-
ly large supermatrix C while holding the sum of the variances

constant.

4. THE VERY SPECIAL CASE WITH p = 1 AND
SIMULTANEQUS DIAGONABILITY

In addition to p = 1 we now suppose that

. _ .5t
(169 Pipee = 8 Pigs
with
(17) Djlst COV(gjs(hj). glt(hz))

Thus elements of the different bases are uncorrelated if they
do not have the same rank number in the basis. Another way to
put this is that the orthogonal bases are chosen in such a
way that they diagonalize all bivariate marginal distribu-
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tions of the h,| simultaneously. Such a choice of bases is not
possible in ygeneral, but a number of sufficient conditions
for the exlstence of these bases can be castly derived from
the work of Lancaster (1969) and his pupils.

A very interesting sufficicnt condition is that the distri-
~bution of the h, is multivariate normal, in this case we can
use for the gjs the Hermite-Chebyshev polynomials, and we
find the relation

(18) ppae = foy

where the pjz are the ordinary population correlation
coefficients, and where (s) is a power. Thus Hermite-Chebyshev
polynomials gjs and 9ps have correlation equal to the

ordinary (linear) correlation to the power s. The doubly in-
finite matrix of which the eigenproblem must be solved con-
sists of an infinite sequence cof diagonal blocks of order m,
the first one with elementf pjl’ the second one with elements
p;l' and so on. The eigenvalues of the supermatrix are the
eigenvalues of the diagonal blocks.

It follows from the work of Styan (1973) that the largest
eigenvalue of all eigenvalues of the infinite matrix is the
largest eigenvalue of the ordinary population correlation
matrix. Thus for the multinormal distribution the optimal
transformations are all linear, and non linear and linear
PCA amount to the same thing if p = 1. It is of some interest
in this case to study the remaining eigenvalues. For the
second largest one there are two possibilities. It is either
the second largest eigenvalue of the matrix with elements
pjl’ in which case the second best solution is also linear,
or it is the largest eigenvalue of the matrix with elements
ogi, in which case the second best transformations are all
guadratic (Gifi, 1981, ch 11).

This becomes interesting if we realize that the same results
are automatically true for variables which are not multi-
normal, but which can be made multinormal by separate trans-
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formations of each of the variables. In this case the optimal
transformation first transforms to multinormality, and then
applies the Hermite-Chebyshev polynomials. Situations
corresponding to this model seem to occur quite often in

real world situations, and because a dominant first eigenvalue
of the correlation matrix implies that usually the dominant
eigenvalue of the matrix of squared correlations is larger
than the second eigenvalue of the correlation matrix, this
means that the two dimensional solutions often show guadratic
plots, sometimes called 'horse shoes' (Hill, 1974).

5. THE VERY SPECIAL CASE WITH p = 1
AND FINITE BASES

If the bases can be chosen to be finite, for example because
the h. are discrete variables assuming only a finite number
of values, then things also simplify dramatically. Suppose
basis gju has kj elements. The matrix ojlst is now of order
) kj' and can be thought of as consisting of m? matrices,
one for each pair (j,%), the one corresponding with pair

(j,2) has kj rows and k, columns.

If we choose the gju eqial to indicator functions for
discrete variables assuming values 1, ..., kj' then this re-
duces to correspondence analysis (Hill, 1974; Bouroche &
Saporta, 1980; Benzécri, 1973; Gifi, 1981). In this case
gju(hj) =1 if hj = u and gju(hj) = 0 otherwise, with

u=1, ..., kj'
In our general framework correspondence analysis corresponds
to choosing p = 1 and using indicator matrices, either be-
cause we have discrete variables or because we have discre-
ticized continuous variables.

It is general practice in correspondence analysis to compute
at least two solutions to the eigenequations, in order to be
able to make plots. In many cases, but certainly not in all,
these two dimensional solutions will be horse shoes,
especially if the variables are designed to measure a one-

dimensional attitude or aptitude or preference or utility
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scale. From our point of view computing two solutions with
correspondence analysis must be interpreted to computing two
solutions to the PCA problem with p = 1, not one solution to
the problem with p = 2. But we emphasize that our interpreta-
tion of correspondence analysis is certainly not the only
possible one (cf Gifi, 1981, chapters 3 and 4).

6. WHAT IF p > 1 ?

If p > 1 then our optimization problem is not an eigen-
problem anymore, and our form of PCA becomes very similar to
the one outlined by Kruskal and Shepard (1974), Young,
Takane and De Leeuw (1978), Tenenhaus (1977). In this case
it is most useful to go back to the original loss function
{5}, and to apply an alternating least squares algorithm. In
its simplest form such an ALS-algorithm minimizes the loss
function over X and A for & fixed at its current value, then
minimizes the loss function over ¢ with X and A fixed at the
current value, and it then.proceeds by alternating these two
steps. Minimizing over X and A is a linear PCA problem, and
we know how to solve this, minimizing over ¢ amounts to
computing the conditional expectation of the weighted sum

oo

usl Juu

given the hj. Again in the general case computing such a
conditional expectation may be far from simple, and we need
special assumptions in order to proceed. Simultaneous
diagonability does not help very much in this case, and

consequently we can only derive some additional useful results

in this case if we can choose finite bases. This is exactly
the case studied by the authors mentioned earlier in this
section, who sometimes introduce the additional generaliza-
tion that the optimal transformations must be in a given con-
vex cone of transformations.

One computational remark is important here. In stead of an
ALS—-algorithm with two steps it seems wiser to use an ALS-
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algorithm with three steps. The step which computes X and A
for given ¢ is split into a step which computes X for given
A and 9, and a step which computes A for given X and ¢. This
amounts to the same thing as using one or more Bauer-
Rutishauser inner iterations (Rutishauser, 1969, 1970) before
computing new currently optimal transformations.

7. FINITE BASES

We have seen that a convenient finite basis are the indicator
functions, which can be used without loss of generality or
precision if the variables are discrete and assume only a
finite number of values. If the h. are continuous we can

also use indicator functions if we first discreticize the hj
in a finite number of intervals. This means, in other termi-
nology, that we approximate the optimal transformations by
using a finite basis for the subspace of step functions.

Step functions usually give a poor approximation of
continuous functions, not necessarily in terms of precision
of approximation, but in terms of data analytical interpreta-
tion. In examples in which we know the optimal transformations
(for example multinormal populations with different
continuous distortions) it is often difficult to ‘'recover!’
the preéise nature of the optimal transformations from the
plot of the step functions (Gifi, 1981, ch 11).

As a consequence we should like to have a more flexible
finite basis to approximate continuous transformations, be-
cause for practical purposes it is always necessary to
approximate infinite or very-large dimensional spaces by
using relatively low-dimensional subspaces. Fortunately a
natural and powerful generalization of the indicator functions
is available, and has been studied a great deal in recent
years. We mean the B-Splines {(De Boor, 1978).

8. THE APPROXIMATION WITH B-SPLINES

To generalize the indicator functions we use an orthonormal




389

basis of spline functions. Such a spline function $j K, 1 for

r ’
variable j is any linear combination of B-Splines of order k
for the knot sequence 1. Thus

_ ) (k)
(19) $.c09) = 1 23Ry,

h,

(J)

We have dropped the index 1 because the knot sequence is
fixed and I is the number of intervals + the order (=k} of
B-Splines.

Define the inner product matrices

(k) - (k) (k)
(20) (Ujl )St = COV(Bjs (hj), BLt (hl))'
and Fék) = diag (Uéﬁ))‘ Define the supermatrices
r -
(k)
U11 .....................
k) _i{° ‘ -
R IR : [
. 32
. U(k)
L )
and F(k) (F;k), ....... ’ Fék)}.

If we use B-Splines of order 1 these matrices reduce to some
familiar forms: First, if the partitioning induced by the
number of knots is made increasingly finer Fgl) becomes the
univariate density of variable j and U;;) becomes the bi-
variate density of variables j and 2.

Second, if we use a limited number of knots the submatrix
Fgl) will contain the univariate marginals of the intervals
between adjoining knots and the submatrix U;i)
the bivariate marginals of such intervals between variables

j and L. Further we can interprete the first order B-Splines

will contain

as a sequence of indicator functions, each of them indicating
whether a datapcint belongs to a certain interval between two
knots or not. If we write these indicator functions as columns
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of an indicator matrix G;l)(n x rj) where rj equals the

number of knots, then we can say

(1) _ ~(1).(1)
(21) sz = Gj G£
and
(1) (1)' . (1)
22 F. = G, G.
(22) J J 3
Using the linear weights aj, j =1, ..., m, the respective

sums of variances and covariances now become

« 1)
(23) ) aj Uy, a,
and
(1)
4 D P
(24) LajFyay,

and the characteristic equation is hence

(25) ) U;t)az = A Fgl)aj

The equivalence with analyse des correspondances and princi-
pal components analysis is clear (cf Hill, 1974, p. 342;
Gifi, 1981) provided we use these first order B-Splines.

We will refine the approximation by using second order B~
Splines but we still can use a kind of pseudo indicator
functions with 2 non zero elements per row. F;Z) becomes a
banded symmetric matrix and is not diagonal anymore. The
sparseness of G;I) is partly gone but especially for k g 2
we will still have the computational efficiency of the B~
Splines combined with the straightforward simple generaliza-
tion of the step function approach. The use of B-Splines
takes away the disadvantage of the crudeness or discontinuity
of the step functions at the breakpoints (cf Hill, 1974, p.
349) while maintaining the advantage of not having to use
strict linear combinations of untransformed variables.
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Solving (25) for k » 1 simply consists of computing the
eigenvalues of a symmetric positive semidefinite matrix,
which can be done with standard methods. The Bauer-Rutishauser
method is to be pfeferred here toc if one is only interested
in a few dominant eigenvalues. The algorithm based on this
principle is identical to Richardson's method of reciprocal
averages (Horst, 1936; Hill, 1973; De Leeuw, 1976; Nishisato,
1980). A production computer program along these lines,
written in ANSI fortran IV, that fits discrete step functions
is HOMALS (Gifi, 1981; De Leeuw & Van Rijckevorsel, 1980). In
the terminology of Gifi (1981, ch 1) we can say that corres-
pondence analysis fits multiple transformations. "Multiple®
means that a variable is transformed differently for every
dimension. Thus we choose p > 1, and compute a number of
solutions, each defining a different transformation.

In applying PCA with p > 1 we use a single approach. We
compute only one transformation for all dimensions per
variable. In fitting B-Splines in PCA we want to approximate
¢ with a least squares (=LS) approximation by splines of a
low order. Computationally this leads to a banded and linear
system of equations to be solved. We used an algorithm to
solve this system in the substep of the ALS structure to
approximate ¢. This least squares approximation algorithm
with splines is extensively discussed by De Boor (1978, p.
249).

The authors are currently working on an algoritm and com-
puterprogram that combines the approximation with B-Splines

(k > 1) and the simultaneous iteration method.
9. AN EXAMPLE

The data are a version of Thurstone's cylinder data
(Thurstone, 1947, p. 117). They consist of 20 objects and 10
variables. They describe the properties of cylinders. These
cylinders vary in two dimensions, which are the first 2
variables. The other 8 variables are monotcone functions of
these 2 dimensions. These functions are shown in table 1.




var 1 = a,

var 2 = bi

var 3 = 2("bi)¥

var 4 = Zai(nbi)s

var 5 = aibi

var 6 = (21)‘1a1bi

var 7 = (2n)—5aibzg

var 8 = aib;1

var 9 = azlbi

var 10 = Zaib;2
Tablé 1. Thurstone's

cylinder data

-
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The first two variables are a
sample of size 20 from two in-
dependené uniform random varia-
bles on the unit intérval. The
meaning of these variables (in
terms of cylinders) is not rele-
vant in our case. We simply use
the fact that a centered log
transformation of all variables
gives a matrix of exact rank two.
The aim of the techniques dis-
cussed here is to recover these
transformations. The idea is that
non linear principal components
analysis will fit this matrix
perfectly in two dimensions, and
that correspondence analysis will

not accomplish this result because bhe second eigenvalue is

not the second root of the correlation matrix R(¢}.
The fit in table 2 is defined as the sum of the first two

eigenvalues of %R(Q). The maximum fit is thus equal to 1.

Technique used Type of transformations|Total fitjeigenvalues
approximating ¢ for p = 2

etric PCA single linear .87 .60 .27
Erdinal PCA single monotone .94 .66 .28
splines-PCA k=1 |single LS splines k=1l .89 .61 .28
splines-PCA k=2 |{single LS splines k=2 .98 .68 .30
Eplines-PCA k=3 |single LS splines k=3 .99 .69 .29
Correspondence- |multiple splines k=2 .77 .77 .66

nalysis+splines

Table 2. Fit, eigenvalues and transformation-types for several

techniques.

The linear fit is surprisingly high compared with the ordinal
fit, which on the other hand is clearly inferior to the single




393

spline approaches for k - 1. The gain in using higher degree
splines (k - 2) is negligible. The special role of the

second eigenvalue of the multiple spline transformations be-
comes clear if one realizes that, in order to obtain perfect
fit, this value should maximally be .23 (i.e. 1 - .77). It is
somewhat unwise to apply multiple transformations in such a
"single” case, where an underlying “correct® transformation
and a two-dimensional structure are known to exist. A much
wiser application of a more dimensional correspondence
analysis in a similar context on multinormally distributed
variables is discussed by Lafaye de Micheaux (1978).

Together with the superiority of the splines approach is this

the main conclusion of this example.
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