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SUMMARY :

In this paper we define continuous numerical data, and discuss several
algorithms to find optimal least squares quantifications of data of this
type. The various algorithms are cambined into a single algorithm that

seems to be very efficient.
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1: Introduction
An important problem that must be solved repeatedly in many scaling programs is the
least squares regression problem

min (x-y)'(x-y).

YyeC

The vector x in this problem is known, the set C is also known, and determined by
the measurement characteristics of the data. If the data are ordinal, for example,
we use monotone regression. The set C is a polyhedral convex cone, defined by

c={ylylsy25...syn}.

If the data are numerical we use linear regression. In linear regression C is
defined by using a known n X p matrix U, and by specifying
*

C={y | y=uz,

for same p-element vector z. Clearly C is a linear subspace with dimension rank(U) .
Important special cases are ratio scale data (p = 1), and interval scale data with

C={ylyi=zlui+22 3

for same pair 21'22'

In the case of numerical data it follows frem the definition of C that equal rows

inU 'imply equal values of y. In the interval scale case, for exanmple, we have Y, =Y

if u =u ' If the numerical data are cateqgorical this restriction may be undesirable.
In survey data, for example, many nueerical variables occur, whose possible values ‘
are grouped into a amall number of intervals. Incame is a familiar example, and there

are many others. In cases such as these it is usually too restrictive to represent

_all observations in a category by the same nurber. We want to represent categories

by disjoint intervals of numbers, and the quantifications of individual observaticns
can be chosen freely from the interval the observation is in.

In their discussion of optimal quantification Deleeuw, Young, and Takane (1976)
distinguish between the discrete and the gontinuous approach to quantifying

categorical data. Representing all observations in a category by the same number
is the discrete approach, representing categories by disjoint intervals of real
nunbers is the continucus approach. In the case of ordinal data the distinction
reduces to that between the primary and secondary approach to ties discussed by
Kruskal (1964). Primary is contin + Secondary is discrete. In the case of
continucus numerical data Deleeuw, Young, and Takane propose to define C by
C={y | ui'syisuz},

where the u; and ui+ are known numbers. If the data are categorical then the
u; and u:,: for observations in the same category are all equal, and we can write
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C={y | Uiy S € g(i)},

where g(i) indicates which category observation i is in. Thus a category
L]

g is quantified as the known interval [u;,u;] . The regression problem

for these continuous numerical restrictions is trivial, we sinply set

. if x, < u;

ul i ul,
=x iful ¢x su
i&x t R B

u+ if x >u+

i i i®

The definition of continuous numerical data p;oposed by DelLeeuw, Young,
and Takane is not very useful in generalizations of principal camponent
analysis such as HOMALS (Deleeuw, 1976). This is because the definitiocn
is the continuous version of the discrete restrictions

C={y |y; =ul

which is the type of .restriction we use if the data are on an identity
scale. In HOMALS we deal with variables which are defined on {at most)
interval scales. In Deleeuw (1976) a possible definition of a continucus
interval scale was proposed. We set

c={y | zlu; +z, 5y, < zluI + zz},

with u; and uI again known, ui— < u;: for all i, but z, and 2z, unknown.

1

The definition merely asserts that there exist z, and 2, such that

1
Y is between the resulting bounds. Observe that in this case C is a
polyhedral convex cone, while the Deleeuw, Young, ~and Tekane definition

rmakes C a rectangle. For obvious reasons we have to restrict z. and z

1 2
in the definition by zlu; +2z, 5 zluI + 2z, for all i, which is equivalent
to z, > 0 if there is at least one i such that ui_ < uI. If u; = uz for

all i, then C becames the same as in the discrete interval case, and
the requirement z1 2 0 is not needed any nore.

2: Decamposition

The general regression problem for continuous numerical data is of the
following form. We want to minimize
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5w =k ] (x; - y,)2 |
E: i=1 1

overallyianandallzinnsuchthatUzsysVz. Herenisthesubset
of R® defined by

Q= {z | vz g vz},

We assume that g is nonempty. It is clear that the regression problem is

2 quadratic programming problem, but directly applying one of the standard
quadratic Programming methods Seems undesirable, because the number of
variables is n + P and the number of Constraints is 2n, ang this can both
be very large. In HQMALS, for example, applications with n around 1000 are
qQuite camon. On the other hand if we consider z as fixeq the problem
becomes Very easy to solve, even for large n, and the number of carmponents
of z is usually very small (ratios P=1; interval: P=2; degree q polynamial s
P = g+l). This makes it interesting to reformulate the problem as follows,

$(2) = inf {5(y) lesysVz} .
Bytheusualconventionsthisnleansthat¢(z)=+ooifz¢9. If 2 ¢ Q then

we know how to campute ¢ (z) fram our discussion in the Previous scetion,

Properties of ¢(z), that will leag directly to efficient algorithms for
solving the Tegression problem. Same of these broperties could easily be
derived fram the general theory of convex analysis, but we have chosen to
give proofs that are campletely elementary and constructive.

We first give sane useful definitions ang same notations, ang then derive

3 simple preliminary result. Suppose z e Q+ Define the following Sdadess)
index sets.

I(z) = {i | X <y (2)},
I(z) = (i ] X =u(2)},

Iy(z) = (i | u (2) < ¥ <v(=2)},

D
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LG =G| x =v @), ’l‘)’?/
L@ = {1 | x> v, (2)). -

-

Here ui(z) is element i of Uz, ang A (2) is element il of vz. ‘Observetlnt

i e seindoi-cebe d-re~tenger-be-dicteint .| For camputational

Purposes we represent subsets of {L,....n}asnxn diagonal matrices, with

diagonal element i equal to unity if i js in the subset, and equal to zero
otherwise. This defines the diagonal matrices M (z). ...,Ms(z) corresponding
- with the index sets I (2),... ,I (z). We also defme the function

¥(z) =% (x - uz)’ M, (z2) (x - U2) + & (x - vz) MS(Z) (x - vz).

By solving the regression problem for fixed 2z, and by substituting the
solution y(z) in o(y) we find the following result.

Iheorem 1: If z ¢ Q then v(z) = ¢(z).

Observe that if z ¢ Q2 then ¥(2) is finite, while ¢(2) = 4. This property
sametimes makes it more convenient to study the function y(2) in stead of
$(2).

3: A local result

Suppose we replace z by z + § , where ¢ is supposed to be small., How does
such a perturbation affect ¥(2) or ¢(z) ? To answer this question we define
more index sets.

J(8) = @4 lui(es) <0},

TR0 =i | u (8 =03,
I8 = (i | u; (8) >0},
T4(8) = {i | v,(8) <o),
Is(6) = {i | v vy {8) = 0},
I ) = (4 lv.(a) > 0}.

The corresponding diagonal matrices indicating these subsets are N (8))as.,

N (s).

< K— :
Lemma 1: If & is “sufficiently small® then ¢ IZ("l) L &(\(‘1)

P
Liz+e=1@u {1,(z) n g ©)), Le J3('§)
I, U {L,(2) QI pIE

Is(z +6)

0 <15

!




The proof is simple, and is omitted. The expression "sufficiently

small" can of course be defined rigorously in several different ways.

Theorem 2: If § is "sufficiently small", then
viz + 8) = y(z) - 6‘{U'M1(z) (x - Uz) + V'Ms(z) (x - Vz)} +
+ % 6'{U'M1(z +8)U + VM, (2 + §)V)S.
Proof: Substitute z + § in the definition of v(z). Use the results of lemma 1
in the form
M (z +8) = Ml(Z) + {Mz(Z) .Ns(s)},
MS(Z + §) = MS(Z) + {M4(Z) -Ng(ﬁ)}:
where the dot indicates elementwise multiplication. Then simplify by using
M2 (z) (x - U2)

M.'(z) (x - vz)

This gives the required formula.//

01
0.

Qorollary 3:1: The function ¢ is continuously differentiable, the functicn ¢
is continuously differentiable in int(Q).
3:2: The gradient of both Y and ¢ at z, if it exists, is
g(z) = U‘M1 (2) (Uz - x) + V'Ms(z) (Vz - x).
3:3: The function y is almost everywhere twice continuously
differentiable, for ¢ the same thing is true in int(g).
3:4 The Hessian of both y and ¢ at z, if it exists, is equal to

H(z) = u'My (2)U + V‘Ms(z)V.

Broof: Almost everything follows directly from theorem 2. Continuity of
the gradient follows fram continuity of M1 (z) (Uz - x) and M5 (z) (V2 -~ x).
The set where both Mz(z) # @ and M4 (2) # @ is of measure zero. If M2 (z)

and M4 (z) are both empty, then H(z) is continucus at z. //

4: A global result
For perturbations which are not assumed to be small we can derive useful

and interesting inequality estimates. Define
R(z,8) =y(z + §) - y(z) -~ 5'g(z),

and also define the new index sets




Ll(z,G) = Il(z +6)n Il(z),

Lz(z,a) Il(z + )W Il(z).

L3(z,5)

Ll

IS(Z + 8N Is(z), . .
L4(z,6) = Is(z + 8V Is(z).
The diagonal indicator matrices corresponding with these index sets are

01(2,6),...,04(2.5)-

Theorem 1: For all z and 6 in RP it is true that

% 6'U'0, (2,8)US + Y 6'V'0,(2,8)V8 £ R(z,6) s % «s'U'oz(z.a)Uc +3 6'V'0, (2, 8)Ve.
Proof: For the proof we need four more index sets.

Kl(z.s) = Il(z +8) - Il(z),

Kz(z,é)

1,(z) - I,(z +8),

Ky(2.8) I(z + ) - 15(2),

K4(z,6) = 15(z) - ISEz +8).

By using the definitions we find that R(z,8) is the sum of the following six
terms.

2

Term 1: & § { (x; - u,(z) - u, (8)) ie K (2.9 1.

Term 2: % [ { (x, - v,(2) - v, ()2 | 1€ K28 )
CTerm 3: % [ (-0, - u,(2) - ui(s))2 |16k (z8) )
Term 4: % J (-0, - v (2) - vi(é))2 |ieK(z8) ).
Term 5: % § { u, (0% | ie1 (2 )

Term 6: % I { v, (07 | i€ I 1

We can bound the first four terms by using the implications:

N ie Kl(z,é) implies —ui(ﬂ) < X - ui(z) - ui(é) <0 ’
ie Kz(z,é) inplies 0 s X - ui(z) - ui(s) 3 -ui(é),

ie K3(z,6) implies 0 s X - vi(z) - vi(s) £ -vi(a),

g0 .

ie K4(z,6) implies -vi(s) % - vi(z) - vi(a)
This implies
Osterm1 ¢k { ui((s)2 | iex (2,0,
octerm2sk ] (v (©F | 1er(z0
R ui(c)2 | ieKy(z,8)) s tem 3 ¢ 0,

AT (v, 0% | 1€k (20) ¢ tem 4 5 0.




If we add these inequalities, and also add term 5 and term 6, we find the
éeqzﬁred result. // '

Corollary 2: Both ¢ and ¢y are convex.

Proof: This follows directly from R(z,8) 3 0. //

It is of same interest to find out when the inequalities in theorem 1 became |

equalities. By checking the proof of theorem 1 we find the following result.

Theorem 3: Necessary and sufficient for equality in theorem 1 (both upper

and lower) is that the indicated cells in the following intersection table

are empty: :
Il(z + 8) 12 (z + &) 13(2 + &) I4(z + &) Is(z + §) ‘

I, (@ ¥ + [} [} g

Iz(z) t + + g

I, (z) g + + + [/]

I4(z) [ t + t t

Is(z) /] g g + t

By using theorem 3 in conjunction with lemma 1 from the previous section
we find the interesting result that there is double equality in theorem 1
if and only if § is "sufficiently small", in the sense defined in the .
previous section.

5: An optimistic algorithm

The definition of y(z) in section 2 shows that y(z) is piecewise quadratic,
where the pieces are defined by the index sets Il (z) and Is(z). This
suggests the following simple minded algorithm: in each iteration we

find the successor of z by minimizing the quadratic function y(2) is

equal to in a neighborhood of z. The formula is

2" =121t

with

t(z) = U'Ml (z)x + V'Ms(z)x.

The results in section 3 show that the algoritlm also has a more reasonable




interpretation: the quadratic pieces of ¢ (z) are joined in a smooth way,
and the algorithm takes Newton-Raphson steps “almost é\f'erywhere". Nevertheless
there are several ways in which the algorithm can go wrong. we illustrate®

this with a small example. Let U and V be defined as the 5 x 2 matrices

1 1 1 1
2 1 2 1
3 1 5 1
4 1 7 1
5_1 12 1

Let x=12354, and let z =1 0. Then
I,(2) = {5}
12(2) = {1,2,3},
13(z) = {4},
I4(z) = {1,2},
I (2) = g. -
Thus t(z) = 1 1, and H(2) is
T 1
1

Thus H(z) is singular, the iteration cannot be carried out. Observe that in
this case g(z) = H(z)z - t(2) is equal to zero, so we would have stopped
anyway. In practical applications singularity of H(z) will be very rare

indeed, but a reliable algorithm must have provisions for the possibility.

In the second place the algoritlm is not stable, in the sense that it does
not necessarily decrease the loss function ¥(2) . If we use the same U and
V, let x=32451and z=0 3, then y(z) = 5. One iteration of our
algorithm gives z = .55 .39, with ¥(2) = 5.20. The loss has increased.

>( A second iteration gives z = .29 1.83, with y(z) = %aﬂd g{z) =0 0.
Although stability is not a necessary property of a good algorithm, it

certainly is desirable.

In the third place the iterations may move z out of Q, temporarily or

permanently. With the same Uand V, withx =2 41 3 5, with z = .28 1.81,

we find y(z) = 2.69. One iteration gives z = -.5 3.33, and y(z) = 12.15.
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The next iteration has z = .23 1.51 and ¥ (2) = 3.07, and the third
iteration gives convergence at z = .25 1.89 with ¥ (z) = 2.66. Observe
that the final solution is very close to the initial one, but the
intermediate iterations have taken us very far away fram the solution.
Observe also that, although samething strange and undesirable happens
in all three examples, we still have rapid convergence to the correct

solution.

A fourth property of the algorithm is much more serious. Again U and V
are as before, x =12534, z=10, and y(z) = 1. One iteration gives

z =1 ~1, and y(z) = 1.5. The next iteration gives z =1 0, and y(z) = 1.

Consequently the algorithm cycles, and can never get to the correct solution.

'm the other hand the algorithm works extremely well if it works at all.
Convergence usually takes only three or four iterations. And moreover
the exceptional cases we have discussed turn out to be extremely rare
‘'with real data sets. Our algorithm is too optimistic, in the sense that
the quadratic approximation is extended to regions where it may lead

us astray, but it is also very practical and very econamical. We do not
want to throw it away, we only have to build in safeguards that prevent

the undesirable possibilities.

6: A pessimistic algorithm

The algorithm in this section is based on the following simple result,
which we give without proof.

Lemma 1: Xr all z,§ in Rp, and for all A 2 O,

Lz(z.xd) < Il(z)U J3(6),

L4(z.A6) € IS(Z)U J,(8). .

The diagonal indicators of the two sets on the right are Pl(z,s) and
Pz(z,d). Fram lemma 1 and the results of section 4 we obtain a useful
inequality.

Lemma_2: For all z,sian, and for all A 3 0,




Wiz + 28) € ¥(z) + As'g ) + 3 A2 8'U'P; (2, 6)US + 22 8'V'P, (2, 6)VS.

Observe that we can assume without loss of generality that not both
Pl(z,é) and Pz(z,s) are zero. If they were, then Il(z) and Is(z) would

be empty, and y(z) would be zero. It follows that if g(z) # O we can
always choose § such that §'g(z) < 0, and such that the number -Ax that
minimizes the quadratic in lenma 2 also satisfies A - > 0. In fact it
follows from lerma 2 that if §'g(z) < 0O, then 5'(U'Pl(z,6).U.+ V'Pz(z,G)V}G
must be positive. If it were zero, then we could make y(z + A8) < O

by choosing A > y(z)/|6'g(2)|, which is absurd A possible choice for §

is, of course, § = —g(z).

Theorem 3: The algorithm
+ -—
z =z - A*g(z)

converges to a point.z, with g(z) = 0.

Proof: It follows from lemma 2 and the definition of x* that w(z+) < ¥(z),
" with equality if and only if g(z) = 0. The continuity of the gradient
guarantees convergence to a stationary point, which is of course a minimm

by convexity. //

We now have an optimistic algorithm, which is extremely fast in almost all
applications, i‘l.lt which may fail in same. We also have a pessimistic algorithm
which always works, but turns out to be very slow. The estimates in lemmaas

1 and 2 are too crude, and convergence often takes more than 100 iterations.
7: A first campranise

An obvious next step is to combine the two procedures into a single algorithm.
We try an optimistic move in each iteration, if this does not decrease the
loss (or if samething else goes wrong) we make a pessimistic step. In the

end the pessimistic steps will bring us into a region where optimism works.
Because the total number of optimistic steps is always finite it follows that
the cambined algorithm converges monotonically. Tests with the combined
algorithm show that its performance is satisfactory, but not perfect. If

we are forced to use the pessimistic approach it often takes around 10 to
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20 iterations before optimism works again. Although the pessimistic iterations
are simple this does take time.

8: A local algorithm

The optimistic algorithm was based on the fact that the loss function is
locally quadratic. It is optimistic because it acts as if the local
quadratic approximation (which is exact in a neighborhood of the current
point) is exact through the whole space. The pessimistic algorithm uses

a majorization approach. It constructs a quadratic function which is an
overestimate of the loss function along a line. An alternative approach

is to use a local quadratic approximation, and to campute the region in
which this approximation is exact. The necessary theory has been explained
in section 3. The results there can be used especially nicely if we

construct the local approximation alang the line.

We consequently choose a direction §, and define Ao as the maximum value \ <
of A which satisfies

Il(z +19 I1 (z) U {Iz(z) O J;(G)},

Is(z +29 = Is(z) v {14(2) n J"(G)}.
The procedure for camputing Ao is perhaps best described as a sort of

camputer program.,
set 1 = 1 and A°= LH
s0: if %; 2 u;(2) then goto s1;
else if ui(G) > 0 then goto s5;
else A, = min {Ao.(xi - (z))/ui(d)}:
sl: if x; > ui(z) then goto s2;
else if vi(c) > 0 then goto s5;
else A, = min {Ao, (xi - vi(z))/vi(d)}:’

s2: if X 2V, (z) then goto s3;
else if vi(d) 2 0 then goto s2a;
else A, =min {Ao,(xi - vi(z))/vi(d)};
s2a: if ui(a) € 0 then goto s5;
else A =min {Ao, (xi - (z))/ui(s)}f
goto s5;




s3

if X, > vi(z) then goto s4;

else if ui(S) < 0 then goto s5;

else Ao = min {Ao, (xi - ui(z))/ui(d)};

sd4: if vi(a) < 0 then goto s5; *
else A =min {A_, (xi - vi(z))/vi(ﬁ)};

s5: if i = n then STOP;

elsei=1i+1;

goto s0;

After determining Ao we also determine A ! which is the value of A that
minimizes the quadratic approximation in theorem 2 of section 3 along the

line z + A6. We then set A, = min (AO,A+), and 2t =z + A 8. Although this

local algorithm is slightly more complicated than the pessimistic algorithm,

it turns out to be considerably faster. In our implementations we have used
the direction H+(z)g(z), with H+(z) the Moore-Penrose inverse.of H(z). We
have only implemented the interval scale case, with p = 2, and with obvious
modifications in the .algorithn to guarantee that z, 3 0. For a mare precise
description of this algorithm we refer to Walter (1976).
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