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Abstract

A method is developed to investigate the additive structure
of data which may a) be measured at the nominal, ordinal or cardinal
ievels, b) be obtained from either a discrete or continuous source,
¢) have known degrees of imprecision, and d) be obtained in un-
balanced designs. The method also permits experimental variables
to be at the ordinal level of measurement. It is shown that the
method is convergent, and includes several previously proposed
methods as special cases. Both Monte Carlo and empirical evalu-

ations indicate that the method is robust.
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0: SUMMARY

In this paper we consider ways to obtain additive repre-
sentations of data structures. This problem is not new of course,
having a long history under the misnomer "analysis of variance",
and we are not so presumptuous as to consider all aspects of the
problem. Rather, we focus our efforts on a particularly robust

way to obtain additive representations for qualitative data struc-

tures.

Even this problem is not new. As early as 1938 (Fisher,
1938, pp. 285-298) préposed an eigenvector method for applying
the simple additive model to categorical data, a method which
has been rediscovered periodically over the years (Hayashi,

1952; Carroll, 1967; Nishisato, 1972, 1973). More recently
Kruskal (1965) proposed a gradient procedure for investigating
the additive structure of ordinal data (see also Roskam, 1968;
deLeeuw, 1969; Lingoes, 1973). Our work is strongly related to
deLeeuw's (1973) discussion of methods for analyzing categorical
data and by Young's (1972) alternating least squares method for
finding additive structure in ordinal data.

Our work is placed in a theoretical frameowrk from which
flows an elegant and simple method for investigating additive
structure in qualitative data, including as special cases all the
methods mentioned in the preceding paragraph. The data may be
either nominal, ordinal, a mixture of both, or quantitative.
Furthermore, with quantitative data the categories may represent
an underlying process which is either discrete or continuous, an
important theoretical and practical distinction which is seldomly

discussed in this context. It is also very simple, within our
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framework, to introduce constraints on the parameters of the
additive model. Thus, for example, it is quite simple to specify
ordinal constraints for some factor in a design, if there is a
priori reason to do so. Finally, our framework allows us to
investigate observations arising in certain unbalanced, incom-
plete factorial designs. If, for example, we have a replicated
factorial design, but have been unable to obtain an equal number
of observations in all cells of the design, our developments can

still be applied.



1. INTRODUCTION

The analysis of additivity has usually been introduced in
the context of a statistical model for factorially classified
observations, requiring assumptions that are often very strong
and unrealistic. In many situations much less specific models
are called for, based on much weaker assumptions. We discuss
the classical assumptions briefly.

In stochastic versions of the analysis of additivity, one
analyzes a model whose assumptions are

S,: = v + a

+ +
17 Y1y 1Byt
SZ: the Eij are independent random variables,
53: the Eij have a centered normal distribution with

finite variance O

(A tilde under a symbol is used to distinguish random variables
from fixed constants). Model S generalizes in a straightforward
way to incomplete and/or replicated multi-factor situations,
in which the number of indices and of corresponding sets of para-
meters is larger. (In order to avoid cumbersome notation we shall
only treat the two factor case in this paper. The generalizations
to more complicated factorial designs are obvious.)

Observe that S does not say that there are parameters Y, ai’
Bj such that each additive combination Yy + ui + Bj is close to
the corresponding Zij; it merely makes a statement about the two-
way structure of the expectations E(zij). The variance 02 can be
arbitrarily large, and if it is unknown (which is the usual case)
we can only test hypotheses about the parameters within S (L.e.,
while assuming S to be true). In many cases S itself is not very

reasonable, the trouble being that the parametric assumption 83
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is too strong in many applications, and even the independence

assumption S, is often not obviously true.

2
Within the framework of established statistical theory, the
logical step out of these difficulties would seem to make weaker,
nonparametric assumptions. A straightforward extension of S
involves the following nonparametric assumptions:
N

= v 4+ 0, + B8, + ¢

1t Y13 i i o3
N2" the ;4 are independent random variables,
N3: the Eij have a centered, centrally symmetric,

continuous distribution with finite variance.
Unfortunately, the statistical theory based on the assumptions of
this model is fragmentary and from the point of view of data an-
alysis inferior to that based on model S.

In the case of model S the natural estimation method and the
optimal way of testing hypotheses follow directly from elementary
properties of the model. The method of least squares should be
used, and the orthogonality properties of the complgte factorial
design lead to additive partitionings of the sums of squares.
These properties lead to optimal tests of hypotheses and are very
valuable for summarizing some of the important structures in
the data. Model N, on the other hand, leads to robust signifi-
cance testing and estimation, but the properties of the tests
and estimates are usually only approximately known, and the beau-
tiful structure of a complete least-squares analysis 1is lost.

For a summary of some of the results that can be obtained we
refer to Puri and Sen (1971).
Another basic complication is that in many applications even

the assumption Sl or Nl cannot be applied because the observed data
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are qualitative. That is, they consist of a small number of
categories for which no precise numerical values are known. This
not only violétes the assumption of a continuous distribution, but
it also makes Sl and Nl meaningless because yij is not defined. 1In
this paper we reformulate the basic structural assumption Sl or

N. in such a way that it also applies to categorical data. For

1

this purpose we use the notion of optimal scaling (Fisher, 1938;

Buttman, 1941; Burt, 19503 Bock, 1960; Nishisato, 1972; de Leeuw,
1973). We shall assume that the data are in K mutually exclusive
and exhaustive categories. We define the K-ary random variables

Ekj which are equal to one if the observation in cell (i,j) of

the design is in category k, and equal to zero otherwise. The

model we employ is, in this simple case,

Dlz kilzijek = vy + 0y + Bj + Eij'

Observe that we have introduced the optimal scaling parameters

ek, which we use to quantify each of the k categories. It is
through restrictions on the optimal scaling parameters Gk that

we can treat qualitative (as well as quantitative) data. If we

do not know precise numerical values for the observations we can
represent each unique observation by a parameter Gk and try to
parametrize the data (as well as the model) to optimize the fit
between the two,. (Naturally, there must be fewer categories than
observations, or we will have a perfect, but trivial fit). Since
we wish to work in the familiar least-squares framework we measure

the fit of a particular arbitrary choice of parameters by a suit-

ably normalized version of the loss function



K
k 2
( E zijek - Y - ay - Bj) s

n
A= I
= 1 k=1

i

e~ s

13
and the computational problem is to choose the parameters ek, Y

o and Bj in such a way that A is minimized.

1?
In the several cases we will discuss not all vectors of real
numbers are admissible as parameter vectors: That is, the admis-
sible values for ek, ai, Bj, and Yy may be subject to certain re-
strictions. Through these restrictions we cope with a variety of
measurement levels. For example, if the data are measured at
the ordinal level, then we restrict the value of GK < Gk if we
know that the corresponding data categories stand in this re-
lation. As another example, if we know a priori that the levels
of some factor (say factor I) have ordinal properties, then we
can restrict the estimate of oy < 0y if that is the desired
order. Other types of useful parameter restrictions will be
discussed in the body of the paper, but we should always keep in
mind that our goal is to optimize, within the least-squares
framework, the relationship between a possibly restricted set of
model parameters %y Bj’ and Y and a possibly restricte& set of
optimal scaling parameters ek.

An important difference between this approach and the one
based on either models S or N is that we have no guarantee that
our estimates will be "good" estimates according to any of the
accepted statistical criteria. We merely compute estimates, and
afterwards we can try to\find out how they behave under various
more-or-less specific assumptions about the distribution of the
%13-

usual sense, we study the properties of a particular transformation

Rather than estimate the parameters of a model in the

or reduction of the data (cf. also de Leeuw, 1973, Chapter I, for



more extensive discussion of the difference between the two
approaches).
We use a computational method for optimizing A which we call

additivity analysis by alternating least squares (ADDALS). This

is an iterative method which alternates between a) minimizing A
over all admissible optimal scaling parameters Gk for fixed values
of the model parameters ai, Bj, and Y; and b) minimizing A over
all admissible model parameters for fixed values of the optimal
scaling parameters. In each of the two phases of an iteration
the optimization is coﬁplete; that is, the values obtained for
one of the sets of parameters absolutely minimize the function

A\ conditional on a fixed set of parameters. Thus, the name alter-
nating least squares: We alternate between two phases, one of
which determines the (conditional) least squares estimates for
the optimal scaling parameters and the other of which determines
the (conditional) least squares estimates for the model para-
meters. This type of procedure is philosophically much like the
NILES/NIPALS procedure developed by Wold and his associates

(Wold & Lyttens, 1969) with the distinction that Wold is usually
concerned with optimizing only model parameters. The class

of procedures used by Wold and by us is known in the mathematical
programming literature as block relaxation or nonlinear Gauss-
Seidel methods. Although our procedure always converges to a
stationary point it may not be the most robust one for each of
the special situations outlined above. Thus, we compare our
method with others which have been suggested for some of the
special cases, with generally satisfactory results. As will be

seen, the iterates are very simple (yielding an algorithm which
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may be used on small machines) and very quick (enabling the

analysis of large problems on large machines).
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2: DATA THEORY

In this section we outline the data theory in which the
developments of this paper are embedded. This section is divided
into three subsections, concerned with the empirical model and

measurement aspects of the data theory.

2:1 Empirical aspects

For the sake of simplicity and clarity, we restrict our
formal developments to the case where there are only two con-
ditions (called by others, factors, independent variables, com-
ponents, dimensions, facets, classificationmns, etc.). The first
condition has n levels (values, elements, structs), the second
condition has m levels. We shall assume that each combination
of levels (cell, structuple) is replicated R times, an
assumption which will be relaxed shortly. Finally, we view
the experimental design as being the cartesian product of all
the conditions and the replication factor.

An assumption fundamental to our work is that an obser-
vation is a discrete entity which belongs to a particular obser-
vation category. Specifically, an observation is said to be in
the same category as another observation if they are indis-
tinguishable from each other in terms of their observational
characteristics (other than the time and place of observation).
Note that the several categories are mutually exclusive and
exhaustive subsets of the entire set of observations. There are
K observation categories in total.

This view of the basic nature of the data allows us to
recode the data in a binary form indicating the category mem-

bership of each observation. The resulting binary matrix, called
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the indicator matrix, has one column for each observation, and

one row for each level of each experimental condition, as well as
one row for each observation category. Thus, in our situation there
are Rnm columns, and n+m+K rows. The rows of the matrix are
partitioned into three subsets, as follows. The first set of
n rows indicates the level of the first experimental condition,
the second set df m rows indicates the level of the second experi-
mental condition, and the last set of K rows indicates the cate-
gory membership of the observation. The first set of rows is
denoted as the submatrix U, the second set as the submatrix V,
and the last as the submatrix Z. The column corresponding
to the replication r of cell (i,j) has elements equal to unity
in row 1 of submatrix U, in row j of submatrix V, and, if the
observation is in category k, in row k of submatrix Z. An example
of observations obtained in a 3 x 2 factorial with two repli-
cations and three response categories is presented in Table la,
with the corresponding indicator matrix in Table 1b.

It is now possible to indicate how we relax the assumption
that there are an equal number of replications of each cell. 1If
a particular observation is missing (i.e., there are fewer
replications of a particular éell) then we simply assign it to
its own unique category. That is, the missing observation
is coded in the indicator matrix as belonging to a separate
category of which it is the only member. Thus, every missing
~ observation gets assigned to a unique observation category. This
shows, at least as far as the coding.of the data is concerned,
that the assumption of a perfectly balanced factorial design is
not a restriction of génerality. We shall see later on how the

coding conventions affect the results of our analysis.
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Table 1la

Replication
1 2
Condition 1 Condition 2
level 1 2 1 2
1 1 2 1 2
2 3 1 1 2
3 1 2 1 1
Table 1b
Cell (1,1)(1,2)(2,1)(2,2)(3,1)(3,2) |(1,1)(1,2)(2,1)(2,2)(3,1)(3,2)
: 1 1 0 0 0 0 1 1 0 0 0 0
cond 1 0 0 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0 1 1
4 2 1 0 1 0 1 0 1 0 1 0 1 0
con 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 1 0 1 0 1 1
observ 0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
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2:2 Model aspects

The model involves concepts which parallel those involved in
the empirical situation. Corresponding to the two experimental
conditions are two vectors of parameters. Just as each condition

has levels, each parameter vector has elements, denoted o, and B

i 3

(we use Greek characters for parameters). There is no notion

in the model which corresponds to the empirical notion of repli-
cations, since we assume that any differences which arise between
replications are random fluctuations not included in the model.
(If we were in fact interested in modeling these fluctuations

then we would view the "replications'" factor as an additional
experimental condition). Finally, there is a direct correspondance
between the experimental design and the model. Whereas the former
involves the cartesian product of all the experimental conditions
and the replication factor, the latter involves the factorial
combination of all the parameter vectors. For both the cartesian
product and the factorial combination we define two real valued
functions which generate the data and model spaces, respectively.

Thus, the model space is defined by

4 Cij = oy + Bj.
and the data space by
K ®
X: vy = L z2,.0,.
ij k=1 ij%k

In matrix notation these definitions are
§: C
t: Y

Ug + VR,

Z0

Finally, as mentioned above, we wish to parameterize the
two spaces so that they are as much alike as possible. This

objective is realized in the usual way of minimizing the sum of
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squared error terms. Thus, we wish to minimize (subject to
normalization) |
n m K K
A= I T (L z,,6, - a, - B.,)
j=1 j=1 k=1 13 K * J
or in matrix terminology
A = (26 - Uo - VB)'(z6 - Ua - VB),
by judicious assignment of values to.the parameters of the two
spaces. The minimization is subject to constraints which we may
place on the parameters. These constraints are discussed in

the next section.

2:3 Measurement aspects

In this section we discuss those restrictions which optionally
may be placed on the data and model parameters. It is through
these restrictions that we treat the variety of measurement con-
ditions under which the observations may have been obtained, in-
cluding the level and precision of measurement, the nature of
the process which may have generated the observation, and the
measurement charactéristics of the experimental conditions them-
selves., We distinguish three types of parameter restrictions,
identification restrictions, model restrictions, and data
restrictions, and discuss them in turn.

2:3.1 Identification restrictions

Note that the model

= +
Cij ai Bj

can be written as

= +
cjy =Y F oyt By

with oy and Bj restricted in such a way that
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These constraints merely serve to identify the model parameters,
since without them we can add a constant to all ai and subtract
the same constant from all Bj without affecting the fit. We
shall always impose these constraints, but they must be distin-
guished from other types of constraints which go beyond the
basic specifications of the model and data spaces.

2:3.2 Model restrictions

There are two types of optional restrictions which may be
Placed on the permissible values ﬁf ai and Bj and may be appro-
priate in certain situations. One type of restrictions is in-
voked when we know that the levels of one (or both) of the ex-
perimental conditions fall in some a priofi order. In such a
situation we should restrict the corresponding model parameters
(ai or Bj) to be in the desired order. That is, we desire that
the parameters be restricted to fall in a known convex &tone.

The other type of restriction applies when we know that the
levels of an experimental condition are related to each other in
some clearly specified functional manner, for example by a
linear or polynomial function. 1In this situation the parameter
vector should be restricted to be a function of some fixed and
known vector. Here we require that the parameter vector belong
to some p-dimensional subspace, with pP<n-1 (or m-1 as the case
may be). Note that a p-dimensional subspace is a particular
type of convex cone.

2:3.3 Data restrictions

The restrictions on the optimal scaling parameters ek are

somewhat more complex than the o. and B, restrictions presented

i J
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in the previous section. These restrictions fall into two

classes which are factorially combined to produce six types of

data which differ in terms of their measurement characteristics.
the first class of restrictions is concerned with the

measurement level of the data, and is precisely the same as

that discussed in the previous section. That is, there are convex

cone restrictions on ek when the data are known to be ordinal;

and subspace restrictions on ek when the data are numerical.

Just as with the model parameters, the data parameters may also

be unrestricted whiéh, when combined with the process restrictions

discussed in the next paragraph, implies that the observations

are measured at the nominal level.

The second class of restrictions on the optimal scaling
parameters ek corresponds to our assumptions about the process
which generated the observations. If we believe that the pro-
cess is discrete then we restrict all the observations in a
particular category to be represented by a single, discrete
aumber. Thus in this case the optimal scaling parameter ek
is a single number for each K, which may be viewed as a point
on the real number continuum. On the other hand, if we believe
that the process is continuous then'we define ek to be an interval
of numbers so that all the observations in a particular category
are represented by an interval of numbers.

By factorially combining the three level of restrictions
(no restrictions, cone restrictions, and subspace restrictioné)
with the two process restrictions (point and interval) we obtain
six types of restrictions on the parameterization of Gk’ which

correspond to six different types of measurement, as follows.
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When we combine the '"no" level restrictions with either one of

the two types of process restrictions we obtain two different
forms of what are commonly called nominal data. The point process
restrictions are appropriate tovdata defined at the nominal level.
In this case all observations in a given category are assigned a
single number, with there being no restrictions between the various
categories. We call this well known case the discrete-nominal
case. On the other hand, when interval restrictions are invoked
we obtain permissible parameterizations of Gk which are appro-
priate to what we call continuous-nominal data. Here we assign

a range of numbers of observations in each category, with no
restrictions between categories. Obviously, the requirement that
all observations in a category must be quantified by an interval
is much too weak, as any arbitrary quantification always satisfies
the restrictions if the category intervals are wide enough.

Thus, we need to specify additional restraints. One possibility
for achieving meaningful and non-trivial boundaries is to view

the suppoéedly continuous-nominal data as actually being continuous-
ordinal (to be discussed in a moment), but with the order of the
categories unknown. The restrictions are of the cone type, but
they are not convex cones. In fact the permissible region is

the union of a finite number of convex cones.

When we combine the cone level restrictions with either of
the process restrictions we obtain the two commonly discussed
forms of ordinal data, corresponding to how tied observations
are handled. Thg cone-point combination yields what we call

discrete-ordinal data for which all observations in the same
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category are to be parameterized by the same number. This is
what Kruskal (1964) has called the secondary approach to ties.
The cone-interval combination yields what we call continuous-
ordinal data, for which all observations in a particular category
are represented by an interval of numbers. Kruskal calls this
the primary approach to ties.

When we combine the subspace level restrictions with either
of the process restrictions we obtain a measurement level which
corresponds to two forms of numerical (quantitative, cardinal)
data. What is most commonly thought of as numerical data 1is
obtained when the point process restriction is combined with the
subspace level restriction, since in this case all observations
which are equal (i.e., in the same category) remain equal (are
parameterized by a single Gk) and all observations which are not
equal (in different categories) are functionally related. On
the other hand, when we combine the subspace and interval res-
trictions we obtain a form of numerical data whose measurement
characteristics take into consideration the precision of measure-
ment, since in this case eéch observation is functionally related
to every other observation within a certain degree of tolerance,
the degree being specified by the width of the interval around
each observation. Note that there is a subtle difference be-
tween the present usage of interval restrictions and the previous
usage. Whereas previously we assumed that the boundaries of
the intervals were determined intermnally (i.e., according to the
nature of the data and model), we now assume that the boundaries
are specified externally before the data are analyzed. Thus we

assume that the researcher can specify an upper boundary 6; and
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k

for data defined at the interval level of measurement there is

a lower boundary O, on each observation category. Generally
but one observation in each category so we usually are specifying
an interval for every single observation. If we use these inter-
vals to specify the precision of measurement then in many situa-
tions we will wish to specify an interval of constant width for
all observations, with the midpoint of the interval being equal
to the observation. That is, we only need to specify eA from
. + A - A
which we can determine 6, = 6, + 6 and 6, = 6, - 6~. There
k k k k
are other interesting uses of the continuous-numerical para-
meter restrictions. For example, external boundary constraints
can be used to impose nonnegativity (by setting 6; = 0 and
Gk = ®©) or other types of range restraints., External boundary
constraints can also be used to impose constancy on certain
- +
portions of the data by setting Sk = 0, = Py where Py is a

k

known constant.
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3: METHOD

In this section we present the alternating least squares
(ALS) method which obtains estimates of the optimal scaling para-
meters Gk and the additive model parameters oy and Bj which
optimize A. In the first subsection we discuss the decompositions
of the function A from which flow the ALS procedure as applied
to the additive model (the ADDALS algorithm). In the next sub-
section we discuss parameter restrictions and their least squares
implementation in ADDALS. In the third section we outline the
ADDALS algorithm fof finding the jointly optimal (restricted)
parameterization of the model and data spaces and prove the
convergence of the algorithm under all restrictions except the
pseudo-ordinal restrictions. In the fourth section we show that
a) the ADDALS algorithm is equivalent to the analytic method
proposed independently by Fisher (1938), Hayashi (1952), Carroll
(1969) and Nishisato (1972) for discrete-nominal data; b) the
ADDALS algorithm is essentially equivalent to the MOﬁANOVA
algorithm proposed by Kruskal (1965) for ordinal data (discrete
or continuous); c) the ADDALS algorithm is equivalent to the
widely used ANOVA methods for analyzing discrete-numerical data;
and d) the ADDALS algorithm is equivalent to the widely used
procedure proposed by Yates (1933) to solve for the optimal values
of missing discrete-numerical data. Finally, it is observed
that ADDALS obtains least squares parameter estimates in a wide
range of other situations for which, to the authors' knowledge,

least squares methods have not heen previously proposed.



-22-

3.1: Decompositions

We now introduce the index r for replications explicitly iato
our equations, by defining the quantified observations as

K

y k

r'ij = I _z, 6
x=1F ij r'k

in the unpartitioned case, or

K(r)

y k

r'ij = X z,. 6
k=1 T ij r'k

in the partitioned case (the number of categories need not be the
same for each replication). From the familiar theory of the
analysis of variance we copy the decompositions of ryij into

orthogonal components. We use dots to indicate indices over

which we have averaged. The decomposition we use is
RTINS S O FULE SUD R O AP RS SUR R VR FE RIS FERe SF LIS SR
(ryij--yij).
We define
ﬁ = Uy..’
ag = Yyt
By AT A
Yig T Vi3 Y1 T YT
e =

rij Tij Y15

r%ij = rfi47Y44

|
m>

Observe that all these quantities depend on the Gk, but we suppress

this dependence to keep the notation simple.

A ~ A

It is well known that u, ai, Bj are least squares estimates
of the corresponding parameters in the model
= u + +
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i.e., they minimize the sum of squares of the residuals r6. The

ij°’
corresponding minimum residuals are, of course, precisely raii'

~

Bj, and Yij are the least squares estimates

In the same way U, ai,
in the model

= u+ o, + 8. + .+
U BJ Yy

rY 17 i rij°

and rgij is the corresponding minimum residual. Although we are
really only interested in the first model (any departure from
simple additivity is assumed to be error) it is sometimes infor-
mative to decompose the residual into a systematic intereétion
and error term. |

In ordinary analysis of variance the decomposition of ryij
into orthogonal components defines an additive decompbsition of
the sum of squares of the ryij into components, each of which is
the sum of squares of one component of the ryij' In this paper
we use the same orthogonality properties to partition our loss
functions

R n m

2
A= T b} I (y,.-u-0a,-B.)
r=1 i=1 j=1 © 13 i

into loss function components corresponding to each subset of
the parameters. The relevant partition is given in Table 2.

In the case in which the parameters are not restricted in
any sense minimization can obviously be accomplished by minimizing
each of the components over the relevant subset of the parameters.
This makes each of the three deviation components equal to zero
because we set u=ﬂ, ai=&i, and Bj=§j. In the constrained case a
similar result is true if the constraints on the parameters are
separated (there are constraints on 0, constraints on B, and no

constraints that involve both o and B). Thus, the overall mini-

mization problem separates into a number of simpler minimization
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Table 2
deviation from optimal mean Rnm (u-—u)2
n ~N
deviation from optimal row Rm I (ai—ai)
scores i=1
m 2
deviation from optimal col- Rn Z (Bj_Bj)
umn scores j=1
’ R n m
SUBTOTAL: deviation from . A A A 2
X . T T T {(u+a,+B,) - (uta +B.)}
optimal parameterization r=1 i=1 j=1 i 73 i 73
R n m R 9
optimal minimum loss z z T (. 6,.)
r ij
r=1 i=1 j=1
R n m 2
total loss for given parame- z z z (ryij—u—ai—sj)

terization r=1 i=1 j=1
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subproblems. As mentioned previously we are only interested in
the additive model in this paper, and the decomposition of
the rGij into an interaction term Yij and aﬁ error term rEij
is not really relevant. It is obvious, however, that Table 2
can be modified very easily to include the interaction para-
meters. In de Leeuw, Young & Takane (1975) we have done this,
and have discussed restrictions on the interactions of form
which has recently been studied extemnsively in the statistical
literature (for example, Corsten and van Eynsberger, 1972).

To derive the second decomposition of our loss function

we define
Y13 i’

and (in the unpartitioned case)

= u + oy + B

~ 1 o m R K
8, = M) " . Iy,. % _zy.,
k k i=1 j=1 137 1
with
R n m
_ k
M= I I I _z ..

r=1 i=1 j=1" *J
Clearly, Mk is the total number of observations in category k,
and ek is the average §ij value of the observations in this

~

category. Consequently, Sk is the unrestrictedvleast squares
estimator of ek for given u, o, B. Note that %k is a function
of u, a, and B but we suppress this dependence to simplify the
notation. The additive partition of A, corresponding to the
problem of minimizing the loss over 6 for fixed a, B, U is
given in Table 3.

We can use this last partition of the total sums of squares

to illustrate our technique for handling missing data and un-

"balanced designs. Remember that each missing observation has its

1
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own category, and the corresponding category score ek is un-
restricted. This means that the optimal score for the category
equals the corresponding gij value, and the missing cell does
not contribute to the loss at all. Minimizing A over our arti-

- ficially balanced design is equivalent to minimizing a loss

.function that is the sum of squares of the deviations of data

and model values in non-missing cells only. This is true for
obtaining either Gk or o, and Bj.

3:2 Use of restrictions

In this sectionlwe discuss the implementation of the most
important types of restrictions on the parameters in the two
computational subproblems (minimizing A for fixed 6 over a, B,
y and minimizing A for fixed a, B, Y over 8).

For the first problem it may be -that we know, a priori, an
appropriate order for the levels of I or J, and therefore may
desire to restrict the parameters, for example, so that o, <a

1
<a_, and/or 815625...§Bm. Our first decomposition (Table 1)

gSe e

shows that the optimal o under these restrictions can be found
by applying the familiar isotonic regression methods (Barlow,
et. al., 1972; Barlow & Brumnk, 1972). Actually, general partial
orders on the o, or the Bj could be incorporated in this way,
but the following developments only cover the linearly ordered
case, with Kruskal's (1964) two methods for incorporating ties.
Although our developments are limited to ordinal restrictions

on the model parameters, we could restrict the a, and B in

i 3

other ways. For example, the ai (or Bj) could be required to

be related by the linear function

o, = a + bOLi

i +1
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or by some other polynomial function. In such a case the de-
composition shows that ordinary linear regression can be used to
compute the least squares estimates of the linearly related oy and
Bj. (See de Leeuw, Young, & Takane, 1975, for developments of'

this notion.)

From the second decomposition (Table 3) it follows that

explicit interval restrictions of the form 8; < Gk < 6; with
known 6; and 6; (e.g., continuous-numerical data) can be handled
very easily. If %k is in the interval then the optimal ek is
equal to Bk' If %k is outside the interval then the optimal

ek is equal to the nearest endpoint of the interval (e.g., equal
to 6; if %k >6; or equal to 8; if %k<8;. Cone restrictions

on ek can be handled by monotone or linear regression again.

Using the primary or secondary approach to ties takes care of
continuous or discrete ordinal data, and of discrete categorical
data (in the last case we set the optimal Gk equal to %k).

Only continuous-nominal data present a problem. In the
pseudo-ordinal case we want the optimal ek to fall into disjoint
intervals, but the order of the intervals on the real line is
unknown. The obvious best procedure is to try out all possible
orders of intervals, compute the optimal ek by monotone regression
with the primary approach for each interval order, and keep the
best order to define the optimal Gk for this iteration. " This can
lead to rather unpleasant computations if the number of categories
is at all large, and it introduces severe discontinuities in
our transformation, which would affect the convergence behavior
of our algorithm. A second alternative (which is used in ADDALS)
is to derive the optimal order of the intervals from the order

of the Gk. This will be a satisfactbry approximation in most
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Table 3

deviation from optimal
unrestricted quantification

~

2
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1 MR

k
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optimal minimum loss z z I (2 rzijek-yij)z
: r=1 r=1 j=1 k=1
R n m K k ~ 2
total loss for given z z r (I rzijek—yij)

parameterization

r=1 i=1 j=1 k=1
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cases. Again, discontinuities may present a problem and conver-
gence is not assured, but we can fix the order of the intervals
at the current optimum in the final iterations, and treat the
data as continuous—-ordinal in the remaining cycles. This
guarantees convergence.

3:3 Convergence

In the previous section we showed that each of the two sub-
problems can be solved in a very elementary way. Of course, this
still does not prove anything about the efficiency or convergence
of the complete proceés of alternating subproblems one and two.

Let us formalize this process somewhat. Define the metric pro-

jection PC(x) of a point x in a Euclidian space on a closed con-
vex subset C in a same space by Yo = PC(x) if and only if Yo is
the unique minimizer in C of [lx—yll (where the double bars indi-
cate sums of squares). Another suggestive name for PC(x) is

the nearest point in C to x. Suppose now that there are two

closed convex sets C1 and C2 with associated projections Pl
and P2. We define an iterative process by starting with k=0 and
some arbitrary Yoo and proceed by first obtaining Pl(yk) (the

. X =
nearest point in C1 to yk) and setting K Pl(yk)’ and then

obtaining PZ(X ) ( the nearest point in C, to Xk) and setting

k 2

yk+l=P2(Xk). We then increase k and repeat. Convergence of this
scheme can be proved by using available theorems in the literature.
There are, in the first place, theorems dealing explicitly with
cyclic projection on a finite sequence of convex sets. The most
general results have been given by Gubin, Polyak, and Raik (1967).
In the second place there are some general theorems dealing with

convergence of block relaxation of convex functions. A representative
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-

reference is Cea and Glowinski (1973). A useful convergence
theorem for nonconvex functions (with statistical applications)
is given by Oberhofer and Kmenta (1974). Finally there are a
number of general convergence theorems for relaxation processes,
of which the most familiar one is given by Zangwill (1969). It

follows from these theorems that the sequence x, converges to

k

a fixed point x_ of P10P2, and that a fixed point of Plon is a

point of Cl nearest C2. Moreover, Y, converges to a fixed

point y_ of P20P1, which is a point of C2 nearest Cl. Conse-
quently, the distance between x and Y is the minimum of all

possible distances between x in C1 and y in C

9
These results can be applied directly to the case in which
there are interval restrictions on the ek, and cone restrictions

on the o, and Bj. If both ek and ui, B, are restricted by cone

i h|

restrictions, however, the results are without value. Cones in-
tersect at the origin, and often the origin is the only point in
the intersection. The theorems quoted above prove that both ©
and o, B converge to zero in this case, which is a trivial and
undesirable result.

We reformulate our problem by specifying that we are only
interested in solutions which are '"mormalized" in some sense.
This normalization (an extra restriction on either 6 or o, B8, Y. or
both) is chosen in such a way that the trivial solutions are
excluded, with the computations being only slightly more compli-
cated. The remainder of this section analyzes the normalization
problem in some detail. As a first natural normalized loss

function we consider
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u =
[yl
which has to be minimized over x in Cl and y in C2, with C1 and
C, two convex cones. For fixed y in C, we still find the minimum

2 2

of U over x in C, by computing Pl(y), but the problem of finding

1

the minimum over y in 02 for fixed x in C1 seems more complicated.
It has been proven, however, by Kruskal and Carroll (1969), that
the solution of this subproblem is still proportional to Pz(x).

Moreover, the alternative normalized loss function

g oo Hx=yl]
| 1=

is connected to pu by the simple relationship

min y = min ¢
yeC2 yeC2

for all values of x. Consequently, using 7 instead of u does not
make any difference. If we combine the results of Fruskal and
Carroll with the fact that for any convex cone C it is trﬁe that
Pc(ux) = aPC(x) for all >0, we find the important result that
our previous alternating projection procedures also minimize

the same subproblems for normalized loss functions, at least if
we normalize the solutions in the proper way. Moreover, the
normalizing can be done whenever we want to; it is not necessary
to normalize after each iteration, although we do. Finally, it
does not matter which of the two natural normalizations of A we
use, the results in each iteration with differ only by a propor-
tionality factor, and the ultimate solutions will always be iden-
tical. Observe that an equivalent formulation of the normalized
problem is the maximization of x'y under the condition x ¢ Cl’
y € C,, and under the normalization conditions llx]]=1 and |]|y]||=1.
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This shows that we minimize the angle between the vectors x and
y in their cones, without paying attention to their length. An
alternative elementary proof of the Kruskal and Carroll results,
with applications to ALS, is given by de Leeuw (1975). Conver-
gence for normalized iterations follow in the same way as before
from the general convergence theorems for relaxation processes.

The structure of the iterative process is now obvious. A
program is available from the second author.

3:4 Relation to earlier work

If the convex sets C1 and C2 are linear subspaces, then the
projectors Pl and Pz are independent of x and y. Thus, there
are orthogonal proejction matrices A and B such that
Va1 = B = BAYL,
and
Kl T AVpap T ABX:
It follows that in this case our ALS method is equivalent to the
power method for computing the dominant eigenvalue and corres-
ponding eigenvector of BA and AB. Since the method proposed by
Fisher (1938), and rediscovered by Hayashi (1952), Carroll (1969),
and Hishisato (1972) finds the eigenvalue/eigenvector pair of
the same matrices, it is clear that ALS is equivaient to these
methods. In this specific case the previous methods are more
efficient. It must be emphasized that some authors compute
further subdominant eigenvalues and eigenvectors of these matrices
to obtain a multidimensional qualtification in an ALS framework.
Our missing data technique has been proposed, in the case in

which there are no constraints on the model parameters and the

non-missing observations are known real numbers, by Yates (1933)
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(see also Wilkinson, 1958). The iterative technique has also
been used by some authors as a computationally convenient way to
estimate parameters in unbalanced designs. It is easy to show
that the technique solves the least squares method by an itera-
tive method based on a regular splitting of the design matrix.
The theory of such methods has been studied very recently by
Berman and Plemmons (1974).

It is also interesting to study the relationship of ALS and
gradient methods, since Kruskal (1965) has proposed a gradient
method for continuoué or. discrete ordinal data, with mno con-
straints on the model parameters. We first consider the general
unnormalized problem of minimizing llx—y|l ovEY. X E Cl and.y ‘e Cy-

Tt is well known that the function

v(x) = min ||x-y]|]| = ||x—P2(x)||
yeC2
is continuously differentiable, with gradient vector x—Pz(x). The

gradient projéction method (Levitin & Polyak 1966) sets

x* = P [x-R(x-2,(x))],
with the step size K chosen in such a way that sufficient decrease
of v(x) is guaranteed. Levitin and Polyak show that K=1 is an ad-
missible step size, and by setting K=1 in the update equation we
find the ALS method x+=PloP2(x). Thus, our ALS algorithm 1is a
convergent gradient projection algorithm with constant step siée.

In the normalized case we find v(x), such that

| 'X—PZ(X) II

s e
yeCou | |yl | =] |

which is continuously differentiable if | |x|| # 0, with gradient
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g(x) = |Ix||-1 (x—Pz(x)) - v(x) x.
Again, we can choose the stepsize in a gradient projection
algorithm in such a way that it becomes equivalent to ALS, except
possibly for a different normalization of intermediate solutions.
If one of the cones in the normalized problem is a linear subspace
we can collect a basis for the subspace in T, and minimize

v(x) = min llEELXLl

yec, |lrx|]
unconditionally over x. Kruskal's MONANOVA (1965) is the special

is the polyhedral convex cone of monotone trans-

case in which C2

formations. In the same way as before we show that the iterations
of ALS can be interpreted (up to proportionality factors) as
gradient iterations, with a particular choice of the step size.
In MONANOVA the step size is determined by a completely different
procedure, which may or may not be more efficient.

In a paper dealing with another special case of our situation,

Bradley, Katti & Coons (1962) define

u(y) = min Tx-
x |lTx]|
and minimize u(y) over C2 by a coordinate descent method. The

relationship of this method and ALS is complicated, although the
basic idea of decomposing the optimization problem in a cyclic
sequence of simpler problems is the same for both methods. If
follows from the convergence theory of the methods we have shown
to be equivalent to our method that convergence of ALS in these
cases is at most. linear (and can degenerate to convergence of
order zero in some cases). In the computational literature a

large number of methods are available that can be used to speed
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up convergence. In particular, our analysis shows that choosing
a different step size in gradient projection methods corresponds
to over or underrelaxing the ALS iterations. Our examples show
that in some instances convergence of ALS is quite slow, and ex-

perimenting with a relaxation parameter may be quite useful.
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4: RESULTS AND DISCUSSION

In this section we present the results of applying ADDALS
to several sets of data whose structures have been investigated
by methods which are special cases of ADDALS. For these data we
expect our results to be very much like the previous results. We
also present the results of ADDALS analysis of artificial data
to evaluate other special ADDALS cases. We will first discuss
nominal data, then 6rdinal, then numerical.

4:1 Nominal data

Due to the equivalence of the iterative ADDALS method and
the analytic eigenvector method when the data are discrete-nomi-
nal it is unnecessary to determine whether ADDALS will behave ro-
bustly with artificial error-free data. It will. However, we
should point out certain types of discrete-nominal data (with
or without error) which do not yield results which are unique up
to a linear transformation. An obvious example is data which
consist of unique categories, i.e., for which there is only one
observation in each category. For such data, any parameterization

of o

1 and Bj yields a perfect, but meaningless, solution. A

necessary condition for a unique solution, then, is that one
category containgat least two observations. This condition is by
no means sufficient, however, Consider, for example, the 3 x 3

table with 3 observations in each of 3 categories:

A A A
B B B
C C c.

In this case the row effects are completely determinant and the

column effects are only determined to be equal at all levels. As
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another, more subtle example, consider the 3 x 4 table with eight

observations categories:

A D B E
B E c F
C F G H.

If these categories are assumed to be discrete (not continuous)
then the rows are connected (since each shares categories with
another row) but the columns are only partially connected (since
column one shares categories only with column three, and
column two only with column four). Thus, the rows are determined
up to a linear transformation, but the columns are determined up
to two separable transformations, one for columns one and three,
and another for two and four, due to the fact that two and four
share no categories with one and three. Thus, an important con-
dition to obtain results defined at the interval level from dis-
crete-nominal data is that all rows (columns) be connected by
common categories. It does not seem to be necessary that a row
(column) share at least one category with all other rows (columns),
but rather that a row (column) share at least one category with a
second row which shares a category with a third, etc. Of course,
these are but exaﬁples, and we do not mean to imply that they
represent a complete argument for a necessary, let alone a sufficient
condition which must be met to obtain a quantitative analysis. In
the case of replicated data, for example, the comndition given
above can undoubtedly be weakened.

We have found that ADDALS yields results which are within
a linear transformation of those obtained by the analytic eigen-

vector procedure for discrete-nominal data which meet the necessary
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condition given above. Fisher (1938, pps. 285-298) demonstrated
his eigenvector method by analyzing data concerning twelve samples
of human blood tested with twelve sera, where the observations were
one of five chemical reactions (this is a balanced, unreplicated
12 x 12 factorial design with 5-category data assumed by Fisher
and ourselves to be discrete). ADDALS obtained a solution with

A = .5397 in 8 iterations with a random start (the criterion to
terminate the iterative process in this and all other anélyses,
unless otherwise stated, is that the improvement in Xz must be
less than .0005). Thé ADDALS parameter estimates are related to
Fisher's estimates by a perfectly linear transformation. Carroll
(1969) demonstrated his CCM method (which is identical to Fisher's
proposal) with data obtained in an experimental situation des-
cribed by three variables: the wave form, modulation percentage
and modulation firequency of a tome. The experimental design was

a factorial 2 x 3 x 4, balanced and unreplicated. The data
analyzed by Carroll were the clusters into which each of the 24
tones were placed by a clustering program, there being 5 sucﬁ
clusters. Our analysis (assuming discrete process) yielded
results indistinguishable from Carroll's analysis, except for a
linear transformation (A = .4477, 34 iterations, random start).

We now investigate the behavior of ADDALS via the use of an
artificial example in which the true population values underlying
the discrete-nominal observations are known. In Table 4a we
present the population values for the example, and in Table 4b
we present the observation categories (this is a 6 x 6 balanced
design with 2 replications, and with 5 observation categories

in the first replication and 3 different observation categories in
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Table 4a

Population Values

12

14

1 2 3 4 5 6
3 4 5 6 7 8
5 6 ‘7 8 9 10
8 9 10 11 12 13
10 11 12 13 14 15
13 14 '15‘ 16 17 18
15 16 17 18 19 20
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Table 4b

Observation Categories

j
2 3 4 5
A A B B
A B B C
B C c c
c c D D
D D D D
D D E E
F F F F
F F F G
G G G G
G G G G
G G H H
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the second replication). The population values are completely "
connected. From Table 4b you can see that we have introduced
two types of systematic observation error. One of the types of
systematic error is represented by the fact that the true values
have been collapsed into a smaller number of observation categories,
whereas the other type of systematic error is inconsistencies
- (between replications) of the observation categories. However,
there is no random error (the true values can be ordered properly
by the observation cntegories in each replication). These types
of systematic errors nre common types of observational error
in practice.

In Figure 1 we plot the parameter estimates obtained by
ADDALS (A = .3366 in 12 iterations, random initial category values)
against the true values (the letters indicate category membership).
It is clear that the derived o, are linearly related to their

i

tfue values, though the Bj are not. In particular, the derived
values of Bl and 82 are equal even though the true values are not.
This anomoly is due to the fact that the corresponding columns of
the observation matrix are identical. We note now that this
effect carries through all the analyses of these data which are
to be presented, and that a linear-relation could be obtained with
differing observationicolumns. Identical columns (or rows) of
observations is of some concern, however, and should be treated
with caution.

In the remainder of this section we investigate the behavior

of ADDALS under the continuous-nominal assumptions. Actually, as

noted above, the totally unrestricted form of the continuous-



-42-

-27duexs TBUFWOU-23I3IDSTP TBIOFIT3Iay T 2an8T4

san|pA J9jdwpiod anuy

J9jwpind paatiap

SaN|DA

0z Sl 0l S
V W V
4 44 4 H 4
Jo._l
g 999 98 9§
g —
5 20 200D D
99 99 999 99 99 999 99 /O 0
by
<
a 0d Gd aad aa aa
H H HH HH HH H
o'l
3 3 3

Sl




-43-

nominal éssumptions are meaningleés, so we impose the additional
pseudo-ordinal restrictions discussed above, and then reanalyze
the data in Table 4 under these restrictionms. The plot of the
parameter estimates versus the population values 1is presented in
Figure 2.‘ The solution (A = .1196, 21 iterations, random initial
category values) has ordered the categories in precisely the
correct manner, and the solution is generally the same as that

in Figure 1. It deserves emphasis, however, that a perfect solu-
tion has not been found, and that this is due to the nature of

the systematic error. More specifically, if we look carefully at
the inconsistencies between the 5 observation categories for the
first replication, and the 3 observation categories for the second
replication, we note that there is no order of all 8 observation
categories which will permit a perfect solution, since observation
category G corresponds with the true values ranging from 8

through 15, whefeas category B has observations which correspond
to true values as large as 9, and category D has corresponding
true values as small as 13. Thus, we see that we must define

a partial order of the categories in order to obtain a perfect

fit (A=0), the partial order being

C <D <E,
i,

QO M0 p
| A JA IA LA
MmO O w
RN UNEPA

Since as stated, the pseudo-ordinal and ordinal assumptions
do not permit partial orders, we cannot perfectly fit these data.
Thus, if we were to now use the ordinal information developed by

the pseudo-ordinal analysis ot order all 8 categories, and
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then use this information as the basis of a continuous-ordinal
analysis, we should still arrive at precisely the same imperfectly
fitting solution. Of course it would be relatively trivial to
extend the notions of the pseudo-ordinal and ordinal types of
measurement to include (pseudo) partial orders, and in fact we
have done so in some other closely related work (Young, 1973;

de Leeuw, Young and Takane, 1975). If we then reamalyze these
data under the assumption that they represent a pseudo partial
order, with the prior knowledge that the pseudo partial order
consists of two partial orders (one for the first replication,

and one for the second), then we should certainly obtain a

perfect fitting solution, with the only question being the nature
of the relationship of the solution to the true values. We have
performed such an analysis using the multiple optimal regression
by alternating least squares (MORALS) technique reported by de
Leeuw, Young and Takane (1975) (which for orthogonal ANOVA designs
is precisely equivalent to ADDALS, except for the ability of
MORALS to handle partial orders). The procedure obtained a per-
fect fit (2 iterations, random start), with the derived para-
meter values being plotted versus the true values in Figure 3.

We note that the figure indicates that the dependent variable

and the values of o, are essentially linear in their relationship
to the true values, and that Bj still displays the same nonlinear-
ities as before, but more mildly. The usefulness of such a pro-
cedure might be questioned since it assumes that we have prior
knowledge about the nature of the partial order (it consists of

Y two sub-orders). However, it 1s often the case that the obser-

vation categories in one replication of the experiment bear no

simple relationship to the observation categories in another
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replication. In such a situation the (pseudo) order really con-
sists of several sub-orders, one for each replication.

We conclude, then, that under the appropriate conditions
ADDALS can yield quantitative analyses of nominal data. It seems
cleaf that one necessary condition is that all rows (columns) be
connected by common categories, and it is probably the case that
the number of observations should be large relative to the number
of categories. For the latter reason it is desirable to have as
many replications as possible. Finally, some care should be ex-
ercised when a) two or more (columns) are identical since this
necessarily means the parameter estimates will be equal: and
b) the data are pseudoordinal since the parameter restrictions are
so weak. |

4:2 O0rdinal data

Our first ordinal example utilizes an artifical example dis-
cussed by Kruskal (1965) in his paper concerning MONANOVA. His
3 x 3 data are the squares of the "true" values obtained by the
simple addition of the population row and column values. Thus,
his data contain only systematic error. Furthermore, his popu-
lation values have completely connected rows and columns. The
ADDALS analysis of these data obtained a solution with X = .0000
in 5 iterations (the discrete-ordinal assumption was used). Since
this result might have been an artifact of the "rational start"
(i.e., the observations were used to initialize.the algorithm)
we repeated it with a random start, obtaining A = .0000 in 8
iterations. Both solutions are indistinguishable and are per-

fectly related to the underlying structure.



-48-

We felt that the results reported in the previous paragraph
might be due to the strong connectedness of the data (and the
assumption of discrete observations) so we analyzed a second set
of 3 x 3 artificial discrete-ordinal data which have one uncon-
nected column. The results of this analysis were essentially
identical to those of the first analysis () = ;0000, in 5 iter-
ations from a rational start and 12 iterations from a random
start, estimates perfectly related to true values). wé pushed
this notion even further by analyzing a third set of identical
3 x 3 discrete-ordinal data for which one row and one column are
unconnected. In this case the analysis sufferéd, with the
underlying structure not perfectly recovered (although A = .,0000
in 4 iterations for rational start). So, again, it 1is important
to have conneéted rows and columns, especially for unreplicated
matrices as small as the ones analyzed here. Of course, 1if we
had assumed the data were continuous-ordinal our results would
~have beén less encouraging for these 3 x 3 métrices, since this
effectively disconnects any connections which may be present in
the data. (We also performed all the previous analyses with
Kruskal's MONANOVA and obtainéd indistinguishable results.)

Kruskal (1965) used several sets of real data to evaluate his
procedure; We reanalyzed two of these sets to further evaluate
ADDALS (both of these sets have also been analyzed by Box and
Cox,v1964). The first of these two sets of data concern the
strength of yarns (in terms of the number of cycles before failure)
when the amount of load.placed on the yarn, the amplitude of the
load cycle, and the length of the piece of yarn are varied. Each

of the three variables had three levels, and one observation was
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obtained in each cell. Thus, this is a balanced, unreplicated

3 x 3 i 3 design. In keeping with Kruskal's analysis, we assume
that the observations are continuous-ordinal and-the experimental
conditions are nominal. These data were submitted to ADDALS

and to Kruskal's MONANOVA procedure. After 7 iterations, ADDALS
had coﬁverged to a value of A = .071, and after 8 iterations
MONANOVA had converged to the same value. Both procedures ob-
tained solutions identical up to a linear transformation.

The second set of Pox & Cox data analyzed by Kruskal concern
the survival time of ahimals subjected to one of three poisons
and one of four treatments. These data were obtained from four
animals in eachlconditiOn, thus the experiment is a balanced,

3 x 4 design with four replications. The results df our analysis,
which.assumed that the observations were continuous and that

the experimental variables were nominal, were compared with

the results of Kruskal's analysis (which made the same. assump-
tions) (ADDALS A = .3064 on the sixth iteration; MONANOVA A = .3664
on the eighth). Again, the results are virtually identical.

By removing some of the observations from these data we
obtain an unbalanced design whose analysis can be compared with
the analysis of the balanced design. Thus, we removed four of
the 48 observations, one from each of the three cells involving
the fourth level of the treatment variable, and one from cell
1,1. This leaves us with an unbalanced 3 x 4 design with four
replications in eight of the 21 cells and three replications in
each of the remaining four Cellsf When we compare the results
of this analysis with those of the pfevious one, we see that the

estimates have changed somewhat. We also note that the value of
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(.2751 in 5 iterations) has decreased some from the balanced
case, suggesting that its value is a function of the number of
observations (as ig the case in a closely related situation
discussed by Young, 1970. Finally, we note the observations
have been removed from the balanced design in such a way that
two columns have no observations removed, one has one removed,
and one has three removed. The number of observations removed
is related to the degree of change in the corresponding para-
meter's estimate. Specifically, the column parameter estimate
which changed the most is the one with the largest number of
observations removed.

We now turn to two examples involving ordinal constraints
on the experimental variables. Roskam (1968), in demonstrating
his ADDIT procedure (which is nearly identical to Kruskal's
MONANOVA) utilized a set of data gathered by Ekman (1965) con-
cerning the average ratings of unpleasantness.of an electrical
shock whose intensity and duration was varied, involving 12
levels of each variable. We analyzed these data assuming that
the experimental variables were ordinal and the measurement
process was continuous-ordinal. When we compared our results
(A = .0100 in 9 iterations) with Roskam's (who was unable to

~assume ordinal effects, so treated tham as nominal) we con-

cluded that the two analyses were highly similar (all o, and R

i

were identical for both analyses except two values whose order

3

was "incorrect" for the unrestricted analyses). This implies
that the assumption of ordinal effects was appropriate, though
unnecessary, and that it had no deleterious effects on the

analysis.
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As a second example of imposing ordinal constraints on the
experimeﬁtal_variables, we analyzed data gathered by Kempler
(1972) concerning the number of times each of 100 rectangles was
judged to be either large or small by each of several subjects.
The variables are the height and width of the rectangles, with 10
levels of each variable. We analyzed these data both with and
without the ordinal constraints on the two experimental variables.
Without ordinal constraints we (and Kempler) discovered a few
inversions from the expected order. We note that the value of
A .increased from .1558 for the unconstrained analysis (5
iterations) to .1565 for the constrained analysis (also 5
iterations), a very slight increase due to the restraints. Thus,
this aspect of ADDALS allows us to observe that the best fitting
constraiﬁéd estimates (and their overall descriptive adequacy)
are nearly as adequate as the free estimates.

Finally, we reanalyzed the artifical data in Table 4 under
the assumption that the categories were continuous-ordinal, with
the ordihai information being derived from the pseudo-ordinal
analysis. The results were identical to those of the pseudo-
ordinal analysis (A = .1196, all parameters the same to four
decimal places) with the only difference being that less iterations
were required, due, apparently, to the non-random initial cate-
gory values. Thus, this lends some credence to the pseudo-
ordinal procedure. We also analyzed these data under the partial
order assumptions discussed above, and obtained precisely the
same solution as obtained with the pseudo partial order assump-

tions.
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4:3 Numerical data

It is unnecessary, of course, to give an example of ADDALS
applied to discrete-numerical data, since ADDALS reduces to com-
puting row and column means of the data matrix in this case.
Furthermore, with discrete numerical data which have missing
observations ADDALS is equivalent to the iterativé missing data
technique proposed by Yates (1933), and there are many examples
analyzed by this technique in the analysis of variance literature.
Thus we do not discuss the discrete-numerical case, but turn
instead to the continuous-numerical case.

We cannot compare our method with previous ones in the
continuous-numerical case since we know of none, so we evaluate
this case by analyzing a set of artificial data (in Table 5a
we present the population values, in Table 5b the observation
categories, and the category constraints). This example contains
errors of obsgrvation similar to those in Table 4 (there are
fewer observation categories than population values), but the
range constraiqts are such that the population values constitute
a perfect solution. Note that this example is quite strong
in that all rows and columns of the populatipn matrix are
connected,

The parameter estimates obtained by the ADDALS analysis of
these data are plotted against the population values in Figure 4.

We observe that the estimates of the four row parameter 0, are,

i
essentially, a perfect linear transformation of their population
values, and we also observe that the estimates of the six column

parameters Bj are related by the same linear transformation to
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Table 5a

Population Values

7 11 14 16 17
§ 12 15 17 18
9 13 16 18 - 19

11 15 18 20 21

15 19 22 24 25

Table 5b

Observations

A
1A

Constraints

< B<13<Cg< 17

IA

IN .
IA
1A
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derived parameter values
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o 10 20
true parameter values

Figure 4. Artificial continuous-numerical example.

s
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their population values, but that this latter relationship is
not perfect (of course, when we plot the dependent variable

we see the same linear, imperfect relationship). In particular,
we note that the fourth largest column estimate is relatively
inprecise. We are unsure why this is the case, but we do note
that convergence is very slow for this example (38 iterations
before the convergence criterion of .00005 was met), and that
the solution, at this point, does not yet fit perfectl& (A = ,0050).
vPerhaps if we had let ADDALS run for more iterations an improved
solution would be obtained. We do feel, however, that this
example indicates that with continuous numerical data ADDALS

can behave in a relatively efficacious manner.
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5: CONCLUSIONS

We conclude that the ADDALS approach enableslone to quantify
qualitative data via the application of the additive model (sdb-
ject to.conditions discussed in the previous section). Further-
more, we conclude that the associated algorithm is simple and
efficient, in terms of both speed and size. Ve note that ADDALS
includes, as special cases, the procedure first proposed by
Fisher (1938) to analyze discrete-nominal data and the procedure
first propdsed by Kruskal (1965) to analyée both discrete or
continuous-ordinal data. ADDALS can alsb be used to analyze.
'ordinary' discrete-numerical data, and it includes a generali-
zation of the procedure proposed by Yates (1933) for continuous-
numefical data. ADDALS also includes the‘ability to apply the
additive model to continuous-nominal data, to analyze data
with an additive model which is subject to ordinal constraints
on its parameters, and to analyze data when the experimental design
is unbalanced., We know of no previous proposals which cover any
of these last developments. Thus, we also conclude that ADDALS
is a procedure which is much more general and flexible thaﬁ
previous proposals.

Finally, it is fairly simple to generalize the approach to
models other than the simple additive model. Research‘recently
completed suggests that the alternating least squares approach can
be generalized in a straight-forward manner to other linear models.
We have already developed robust (and rapid) ALS procedures to
apply the multiple and canonical correlation models to nominal
and ordinal variables (de Leeuw, Young, & Takane, 1975). Special

cases of this procedure include procrustean rotation, external
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unfolding, vector projection, additive models with interaction
terms, nonorthogonal models, ADDALS, etc., etc. An ALS procedure
has aiso been developed and evaluated for the biline;r model which
includes nonmetric (and, of course, nominal) factor analysis,
components anaiysis, etc., as special cases. At the time'of

this writing, this development appears to yield a robust and

rapid method. Finally, we have extended the ALS methodology to
the biquadratic modelé (the Euclidian and weighted Euclidian
models) commonly used in multidimensional scaling (Takane, Young,
and de Leeuw, 1975). >Although this is considerably more complex
than those just mentioned, it does appear to provide a promising
alternative to the commonly used procedures. Thus, we find ALS
methodology encouraging not only because of its ability to quanti-
fy qualitative data via application of the additive model, but
also bgcause of its promise to quantify qualitative data via

application of a variety of other models.
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